Estimates of the Linearization of Circle Diffeomorphisms

نویسنده

  • Mostapha Benhenda
چکیده

A celebrated theorem by Herman and Yoccoz asserts that if the rotation number α of a C∞-diffeomorphism of the circle f satisfies a Diophantine condition, then f is C∞-conjugated to a rotation. In this paper, we establish explicit relationships between the Ck norms of this conjugacy and the Diophantine condition on α. To obtain these estimates, we follow a suitably modified version of Yoccoz’s proof.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Press: Bulletin Societe Mathematique De France Linearization of Analytic and Non–analytic Germs of Diffeomorphisms of (c, 0)

We study Siegel’s center problem on the linearization of germs of diffeomorphisms in one variable. In addition of the classical problems of formal and analytic linearization, we give sufficient conditions for the linearization to belong to some algebras of ultradifferentiable germs closed under composition and derivation, including Gevrey classes. In the analytic case we give a positive answer ...

متن کامل

Rational diffeomorphisms of the circle

We prove an interpolation theorem for rational circle diffeomorphisms: A set of N complex numbers of unit modulus may be mapped to any corresponding set by a ratio of polynomials p(z)/q(z) which restricts an invertible mapping of the unit circle S ⊂ C onto itself.

متن کامل

-generic Diffeomorphisms

On the one hand, we prove that the spaces of C 1 symplectomor-phisms and of C 1 volume-preserving diffeomorphisms both contain residual subsets of diffeomorphisms whose centralizers are trivial. On the other hand, we show that the space of C 1 diffeomorphisms of the circle and a non-empty open set of C 1 diffeomorphisms of the two-sphere contain dense subsets of diffeomorphisms whose centralize...

متن کامل

Growth Sequences for Circle Diffeomorphisms

We obtain results on the growth sequences of the differential for iterations of circle diffeomorphisms without periodic points.

متن کامل

The Hilbert 3/2 Structure and Weil-Petersson Metric on the Space of the Diffeomorphisms of the Circle Modulo Conformal Maps

The space of diffeomorphisms of the circle modulo boundary values of conformal maps of the disk. The Sobolev 3/2 norm on the tangent space space at id of the space of diffeomorphisms of the circle modulo boundary values of conformal maps of the disk induces the only Kähler left invariant metric defined up to a constant on the space of diffeomorphisms of the circle modulo boundary values of conf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011