EMG changes in human thenar motor units with force potentiation and fatigue.

نویسندگان

  • C K Thomas
  • R S Johansson
  • B Bigland-Ritchie
چکیده

Few studies have analyzed activity-induced changes in EMG activity in individual human motor units. We studied the changes in human thenar motor unit EMG that accompany the potentiation of twitch force and fatigue of tetanic force. Single motor unit EMG and force were recorded in healthy subjects in response to selective stimulation of their motor axons within the median nerve just above the elbow. Twitches were recorded before and after a series of pulse trains delivered at frequencies that varied between 5 and 100 Hz. This stimulation induced significant increases in EMG amplitude, duration, and area. However, in relative terms, all of these EMG changes were substantially smaller than the potentiation of twitch force. Another 2 min of stimulation (13 pulses at 40 Hz each second) induced additional potentiation of EMG amplitude, duration, and area, but the tetanic force from every unit declined. Thus activity-induced changes in human thenar motor unit EMG do not indicate the alterations in force or vice versa. These data suggest that different processes underlie the changes in EMG and force that occur during human thenar motor unit activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury.

Little is known about how human motor units respond to chronic paralysis. Our aim was to record surface electromyographic (EMG) signals, twitch forces, and tetanic forces from paralyzed motor units in the thenar muscles of individuals (n = 12) with chronic (1.5-19 yr) cervical spinal cord injury (SCI). Each motor unit was activated by intraneural stimulation of its motor axon using single pulse...

متن کامل

Motor unit firing rates during spasms in thenar muscles of spinal cord injured subjects

Involuntary contractions of paralyzed muscles (spasms) commonly disrupt daily activities and rehabilitation after human spinal cord injury (SCI). Our aim was to examine the recruitment, firing rate modulation, and derecruitment of motor units that underlie spasms of thenar muscles after cervical SCI. Intramuscular electromyographic activity (EMG), surface EMG, and force were recorded during the...

متن کامل

Differential fatigue of paralyzed thenar muscles by stimuli of different intensities.

Muscles paralyzed by injury or disease fatigue excessively when stimulated. This study examined whether the first few paralyzed thenar motor units recruited by electrical stimulation of the median nerve were more fatigue resistant than the total thenar motor unit population. The paralyzed thenar muscles of four subjects with chronic cervical spinal cord injury were fatigued by a 2-min intermitt...

متن کامل

Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions.

We investigated the firing rate of motor units in the vastus lateralis muscle in five healthy young men (mean = 21.4 yr, SD = 0.9) during a sequence of isometric constant-torque contractions repeated to exhaustion. The contractions were sustained at 20% of the maximal voluntary level, measured at the beginning of the test sequence. Electromyographic (EMG) signals were recorded via quadrifilar f...

متن کامل

The proportion of common synaptic input to motor neurons increases with an increase in net excitatory input.

α-Motor neurons receive synaptic inputs from spinal and supraspinal centers that comprise components either common to the motor neuron pool or independent. The input shared by motor neurons--common input--determines force control. The aim of the study was to investigate the changes in the strength of common synaptic input delivered to motor neurons with changes in force and with fatigue, two co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 2006