A Golub-Kahan-Type Reduction Method for Matrix Pairs

نویسندگان

  • Michiel E. Hochstenbach
  • Lothar Reichel
  • Xuebo Yu
چکیده

We describe a novel method for reducing a pair of large matrices {A,B} to a pair of small matrices {H,K}. The method is an extension of Golub–Kahan bidiagonalization to matrix pairs, and simplifies to the latter method when B is the identity matrix. Applications to Tikhonov regularization of large linear discrete ill-posed problems are described. In these problems the matrix A represents a discretization of a compact integral operator and B is a regularization matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Matrix Bidiagonalization on the Trident Processor

This paper discusses the implementation and evaluation of the reduction of a dense matrix to bidiagonal form on the Trident processor. The standard Golub and Kahan Householder bidiagonalization algorithm, which is rich in matrix-vector operations, and the LAPACK subroutine _GEBRD, which is rich in a mixture of vector, matrix-vector, and matrix operations, are simulated on the Trident processor....

متن کامل

Generalized Golub-Kahan Bidiagonalization and Stopping Criteria

The Golub–Kahan bidiagonalization algorithm has been widely used in solving leastsquares problems and in the computation of the SVD of rectangular matrices. Here we propose an algorithm based on the Golub–Kahan process for the solution of augmented systems that minimizes the norm of the error and, in particular, we propose a novel estimator of the error similar to the one proposed by Hestenes a...

متن کامل

Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems

We consider the solution of large linear systems of equations that arise from the discretization of ill-posed problems. The matrix has a Kronecker product structure and the right-hand side is contaminated by measurement error. Problems of this kind arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel and in...

متن کامل

Parallel Computation of the SVD of a Matrix Product

In this paper we study a parallel algorithm for computing the singular value decomposition SVD of a product of two matrices on message passing multiprocessors This algorithm is related to the classical Golub Kahan method for computing the SVD of a single matrix and the recent work carried out by Golub et al for computing the SVD of a general matrix product quotient The experimental results of o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2015