Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting
نویسندگان
چکیده
Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM), an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.
منابع مشابه
MICROSTRUCTURE, HARDNESS AND SURFACE ROUGHNESS CHARACTERIZATION OF EBM FABRICATED Ti-6Al-4V SAMPLES
Electron beam melting (EBM) is among the modern additive manufacturing processes whereby metal powders are selectively melted to produce very complicated components with superior mechanical properties. In this study, microstructure, hardness, and surface roughness of EBM fabricated Ti6Al4V samples were characterized. The results showed that the microstructure consisted of epitaxially-grown prim...
متن کاملLaser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants
Additive Manufacturing (AM) methods are generally used to produce an early sample or near net-shape elements based on three-dimensional geometrical modules. To date, publications on AM of metal implants have mainly focused on knee and hip replacements or bone scaffolds for tissue engineering. The direct fabrication of metallic implants can be achieved by methods, such as Selective Laser Melting...
متن کاملNew-emerging approach for fabrication of near net shape aluminum matrix composites/nanocomposites: Ultrasonic additive manufacturing
Recently, high-performance lightweight materials with outstanding mechanical properties have opened up their way to some sophisticated industrial applications. As one of these systems, aluminum matrix composites/nanocomposites (AMCs) offer an outstanding combination of relative density, hardness, wear resistance, and mechanical strength. Until now, several additive manufacturing methods have be...
متن کاملThe effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of dissimilar joint between 17-4PH steel and Ti6Al4V alloy
This study aimed to investigate the effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 17-4PH precipitation hardening stainless steel and Ti6Al4V alloy. For this purpose, the welding of these two alloys was done without an interlayer and with an interlayer of copper with a thickness of 0.8 mm. Two different...
متن کاملThe Effect of Heat Treatment on the Microstructure and Mechanical Properties of Al/Al3Zr + Al3Ti In-situ Hybrid Composite Fabricated by Friction Stir Processing
In this research, an in-situ hybrid composite reinforced by Al3Zr and Al3Ti aluminide particles was fabricated by friction stir processing (FSP). The base metal was in the form of a rolled Al 3003-H14 alloy sheet, and zirconium and titanium metal powders were used as the reinforcements. Six passes of FSP were applied. Tensile strength and hardness of the base metal, as well as FSPed samples bef...
متن کامل