Robust voice activity detection using perceptual wavelet-packet transform and Teager energy operator
نویسندگان
چکیده
In this letter, a robust voice activity detection (VAD) algorithm is presented. This proposed VAD algorithm makes use of the perceptual wavelet-packet transform and the Teager energy operator to compute a robust parameter called voice activity shape for VAD. The main advantage of this algorithm is that the preset threshold values or a priori knowledge of the SNR usually needed in conventional VAD methods can be completely avoided. Various experimental results show that the proposed VAD algorithm is capable of outperforming the VAD of Adaptive Multi Rate (AMR) speech codec in both additive noisy and real noisy environments.
منابع مشابه
A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملVoice Activity Detection Based on Auto-Correlation Function Using Wavelet Transform and Teager Energy Operator
In this paper, a new robust wavelet-based voice activity detection (VAD) algorithm derived from the discrete wavelet transform (DWT) and Teager energy operation (TEO) processing is presented. We decompose the speech signal into four subbands by using the DWT. By means of the multi-resolution analysis property of the DWT, the voiced, unvoiced, and transient components of speech can be distinctly...
متن کاملRobust Voice Activity Detection Based on Discrete Wavelet Transform
This paper mainly addresses the problem of determining voice activity in presence of noise, especially in a dynamically varying background noise. The proposed voice activity detection algorithm is based on structure of three-layer wavelet decomposition. Appling auto-correlation function into each subband exploits the fact that intensity of periodicity is more significant in sub-band domain than...
متن کاملRecognition of stress in speech using wavelet analysis and Teager energy operator
The automatic recognition and classification of speech under stress has applications in behavioural and mental health sciences, human to machine communication and robotics. The majority of recent studies are based on a linear model of the speech signal. In this study, the nonlinear Teager Energy Operator (TEO) analysis was used to derive the classification features. Moreover, the TEO analysis w...
متن کاملK-Complex Detection Based on Synchrosqueezing Transform
K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 28 شماره
صفحات -
تاریخ انتشار 2007