Strong galvanic vestibular stimulation obscures arterial pressure response to gravitational change in conscious rats.
نویسندگان
چکیده
Galvanic vestibular stimulation (GVS) is known to create an imbalance in the vestibular inputs; thus it is possible that the simultaneously applied GVS obscures adequate gravity-based inputs to the vestibular organs or modifies an input-output relationship of the vestibular system and then impairs the vestibular-mediated response. To examine this, arterial pressure (AP) response to gravitational change was examined in conscious rats with and without GVS. Free drop-induced microgravity and centrifugation-induced hypergravity were employed to elicit vestibular-mediated AP response. GVS itself induced pressor response in an intensity-dependent manner. This pressor response was completely abolished by vestibular lesion, suggesting that the GVS-induced response was mediated by the vestibular system. The pressor response to microgravity (35 +/- 3 mmHg) was significantly reduced by simultaneously applied GVS (19 +/- 1 mmHg), and pressor response to 3-G load was also significantly reduced by GVS. However, GVS had no effect on air jet-induced pressor response. The effects of GVS on pressor response to gravitational change were qualitatively and quantitatively similar to that caused by the vestibular lesion, effects of which were demonstrated in our previous studies (Gotoh TM, Fujiki N, Matsuda T, Gao S, Morita H. Am J Physiol Regul Integr Comp Physiol 286: R25-R30, 2004; Matsuda T, Gotoh TM, Tanaka K, Gao S, Morita H. Brain Res 1028: 140-147, 2004; Tanaka K, Gotoh TM, Awazu C, Morita H. Neurosci Lett 397: 40-43, 2006). These results indicate that GVS reduced the vestibular-mediated pressor response to gravitational change but has no effect on the non-vestibular-mediated pressor response. Thus GVS might be employed for the acute interruption of the AP response to gravitational change.
منابع مشابه
Roles of baroreflex and vestibulosympathetic reflex in controlling arterial blood pressure during gravitational stress in conscious rats.
Gravity acts on the circulatory system to decrease arterial blood pressure (AP) by causing blood redistribution and reduced venous return. To evaluate roles of the baroreflex and vestibulosympathetic reflex (VSR) in maintaining AP during gravitational stress, we measured AP, heart rate (HR), and renal sympathetic nerve activity (RSNA) in four groups of conscious rats, which were either intact o...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملImpairment of vestibular-mediated cardiovascular response and motor coordination in rats born and reared under hypergravity.
It is well known that environmental stimulation is important for the proper development of sensory function. The vestibular system senses gravitational acceleration and then alters cardiovascular and motor functions through reflex pathways. The development of vestibular-mediated cardiovascular and motor functions may depend on the gravitational environment present at birth and during subsequent...
متن کاملStimulation of the vestibular system by head movement or changes in gravitational forces is known to induce sympathoexcitation
A postural change from a recumbent to an upright position induces an increase in the hydrostatic pressure gradient, a footward fluid shift, reduced venous return and cardiac output, and reduced arterial pressure (AP). This reduction in AP is sensed by baroreceptors in the blood vessels, and AP is thought to be stabilized by the arterial baroreflex, an important negative feedback process. Altern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2008