Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder

نویسندگان

  • Miao Kang
  • Kefeng Ji
  • Xiangguang Leng
  • Xiangwei Xing
  • Huanxin Zou
چکیده

Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR) imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE). The detailed procedure presented in this paper can be summarized as follows: firstly, 23 baseline features and Three-Patch Local Binary Pattern (TPLBP) features are extracted. These features can describe the global and local aspects of the image with less redundancy and more complementarity, providing richer information for feature fusion. Secondly, an effective feature fusion network is designed. Baseline and TPLBP features are cascaded and fed into a SAE. Then, with an unsupervised learning algorithm, the SAE is pre-trained by greedy layer-wise training method. Capable of feature expression, SAE makes the fused features more distinguishable. Finally, the model is fine-tuned by a softmax classifier and applied to the classification of targets. 10-class SAR targets based on Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset got a classification accuracy up to 95.43%, which verifies the effectiveness of the presented algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

Polarimetric synthetic aperture radar (SAR) remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact o...

متن کامل

Recognition of Sar Target Based on Multilayer Auto-encoder and Snn

Automatic target recognition (ATR) of synthetic aperture radar (SAR) image is investigated. One feature extraction algorithm of SAR image based on multilayer auto-encoder is proposed. The method makes use of a probabilistic neural network, restricted Boltzmann machine (RBM), modeling probability distribution of environment. Through the formation of more expressive multilayer neural network, the...

متن کامل

Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine

A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve g...

متن کامل

SVM-based Target Recognition from Synthetic Aperture Radar Images using Target Region Outline Descriptors

The work in this paper explores the discriminatory power of target outline description features in conjunction with Support Vector Machine (SVM) based classification committees, when attempting to recognize a variety of targets from Synthetic Aperture Radar (SAR) images. In specific, approximate target outlines are first determined from SAR images via a simple mathematical morphology-based segm...

متن کامل

Inverse synthetic aperture radar imaging based on sparse signal processing

Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector, an imaging method was presented with the application of sparse signal processing. This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data, and improves the clarity of the images and makes the feature structure much more clear, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017