Flame-enhanced laser-induced breakdown spectroscopy.

نویسندگان

  • L Liu
  • S Li
  • X N He
  • X Huang
  • C F Zhang
  • L S Fan
  • M X Wang
  • Y S Zhou
  • K Chen
  • L Jiang
  • J F Silvain
  • Y F Lu
چکیده

Flame-enhanced laser-induced breakdown spectroscopy (LIBS) was investigated to improve the sensitivity of LIBS. It was realized by generating laser-induced plasmas in the blue outer envelope of a neutral oxy-acetylene flame. Fast imaging and temporally resolved spectroscopy of the plasmas were carried out. Enhanced intensity of up to 4 times and narrowed full width at half maximum (FWHM) down to 60% for emission lines were observed. Electron temperatures and densities were calculated to investigate the flame effects on plasma evolution. These calculated electron temperatures and densities showed that high-temperature and low-density plasmas were achieved before 4 µs in the flame environment, which has the potential to improve LIBS sensitivity and spectral resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of self-absorption correction using internal reference on determining heavy metals concentration by laser induced breakdown spectroscopy

The identification and concentration of heavy metals, which may be so harmful for the body, is determined by the method of calibration-free laser-induced breakdown spectroscopy using a special strategy. First, the plasma temperature is obtained using the Boltzmann plot. Then, a line with an inappreciable self-absorption is considered for each element as the reference. The modified intensities o...

متن کامل

Nd:YAG-CO(2) double-pulse laser induced breakdown spectroscopy of organic films.

Laser-induced breakdown spectroscopy (LIBS) using double-pulse irradiation with Nd:YAG and CO(2) lasers was applied to the analysis of a polystyrene film on a silicon substrate. An enhanced emission signal, compared to single-pulse LIBS using a Nd:YAG laser, was observed from atomic carbon, as well as enhanced molecular emission from C(2) and CN. This double-pulse technique was further applied ...

متن کامل

Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations hav...

متن کامل

Flame front tracking by laser induced fluorescence spectroscopy and advanced image analysis.

This paper presents advanced image analysis methods for extracting information from high speed Planar Laser Induced Fluorescence (PLIF) data obtained from turbulent flames. The application of non-linear anisotropic diffusion filtering and of Active Contour Models (Snakes) is described to isolate flame boundaries. In a subsequent step, the detected flame boundaries are tracked in time using a fr...

متن کامل

Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy.

Pulsed laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy were performed using a novel laboratory setup employing the same Nd:YAG laser emission at 532 nm for the analysis of five commercially available pigments collectively known as "ultramarine blue", a sodium silicate material of either mineral origin or an artificially produced glass. LIBS and Raman spectroscopy have provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2014