Cardinal Invariants Associated with Hausdorff Capacities

نویسنده

  • JURIS STEPRĀNS
چکیده

Let λ(X) denote Lebesgue measure. If X ⊆ [0, 1] and r ∈ (0, 1) then the r-Hausdorff capacity of X is denoted by H(X) and is defined to be the infimum of all ∑ ∞ i=0 λ(Ii) r where {Ii}i∈ω is a cover of X by intervals. The r Hausdorff capacity has the same null sets as the r-Hausdorff measure which is familiar from the theory of fractal dimension. It is shown that, given r < 1, it is possible to enlarge a model of set theory, V , by a generic extension V [G] so that the reals of V have Lebesgue measure zero but still have positive r-Hausdorff capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Uniformity Invariants of Null Sets for Different Measures

The uniformity invariant for Lebesgue measure is defined to be the least cardinal of a non-measurable set of reals, or, equivalently, the least cardinal of a set of reals which is not Lebesgue null. This has been studied intensively for the past 30 years and much of what is known can be found in [?] and other standard sources. Among the well known results about this cardinal invariant of the co...

متن کامل

Thin-tall Spaces and Cardinal Sequences

We are concerned with a series of problems regarding the existence of Hausdorff scattered spaces of a given Cantor-Bendixson height and with a given associated cardinal sequence.

متن کامل

General topology meets model theory, on p and t.

Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258-262] that the continuum is uncountable, and Hilbert's first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220-224] and Cohen [Cohen P (1963) P...

متن کامل

ar X iv : 0 81 0 . 30 28 v 1 [ m at h . G N ] 1 6 O ct 2 00 8 OSCILLATOR TOPOLOGIES ON A PARATOPOLOGICAL GROUP AND RELATED NUMBER INVARIANTS

We introduce and study oscillator topologies on paratopological groups and define certain related number invariants. As an application we prove that a Hausdorff paratopological group G admits a weaker Hausdorff group topology provided G is 3-oscillating. A paratopological group G is 3-oscillating (resp. 2-oscillating) provided for any neighborhood U of the unity e of G there is a neighborhood V...

متن کامل

Two cardinal inequalities for functionally Hausdorff spaces

In this paper, two cardinal inequalities for functionally Hausdorff spaces are established. A bound on the cardinality of the τθ-closed hull of a subset of a functionally Hausdorff space is given. Moreover, the following theorem is proved: ifX is a functionally Hausdorff space, then |X| ≤ 2χ(X)wcd(X).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994