Use of Atomistic Phonon Dispersion and Boltzmann Transport Formalism to Study the Thermal Conductivity of Narrow Si Nanowires
نویسندگان
چکیده
We study the thermal properties of ultra-narrow silicon nanowires (NW) with diameters from 3 nm to 12 nm. We use the modified valence-force-field method for computation of phononic dispersion and the Boltzmann transport equation for calculation of phonon transport. Phonon dispersion in ultra-narrow 1D structures differs from dispersion in the bulk and dispersion in thicker NWs, which leads to different thermal properties. We show that as the diameter of the NW is reduced the density of long-wavelength phonons per cross section area increases, which increases their relative importance in carrying heat compared with the rest of the phonon spectrum. This effect, together with the fact that low-frequency, low-wavevector phonons are affected less by scattering and have longer mean-free-paths than phonons in the rest of the spectrum, leads to a counter-intuitive increase in thermal conductivity as the diameter is reduced to the sub-ten-nanometers range. This behavior is retained in the presence of moderate boundary scattering.
منابع مشابه
Thermal Conductivity of Si Nanowires Using Atomistic Phonon Dispersions
The thermal properties of Si nanowires (NWs) are of high interest for a variety of applications such as thermal management and thermoelectricity. Most simulation studies to date use the Si bulk dispersion within a confined geometry. The phonon dispersion in ultra-narrow 1D NWs, however, is different from the bulk dispersion, and can lead to different thermal properties. In this work, we study t...
متن کاملCalculation of Confined Phonon Spectrum in Narrow Silicon Nanowires Using the Valence Force Field Method
We study the effect of confinement on the phonon properties of ultra-narrow silicon nanowires of side sizes of 1 nm to 10 nm. We use the modified valence force field (MVFF) method to compute the phononic dispersion and extract the density of states, the transmission function, the sound velocity, the ballistic thermal conductance, and boundary-scattering-limited diffusive thermal conductivity. W...
متن کاملConfinement-Induced Mobility Increase in p-type [110] and [111] Silicon Nanowires
1. Abstract The spds-spin-orbit-coupled (SO) atomistic tightbinding (TB) model is coupled to Boltzmann transport formalism for calculation of the low-field mobility in Si nanowires (NWs). We show that the phonon limited mobility of p-type NWs in the [110] and [111] transport orientations largely increases by more than 7X as the diameter is scaled from D=12nm down to D=3nm. This effect is attrib...
متن کاملThermal Conductivity of Si Nanowires and Ultra Thin-Layers Using Atomistic Phonon Dispersions
Low dimensional materials allow for a drastic reduction in thermal conductivity due to enhanced phonon-boundary scattering, such that high ZT values are achieved. This was also experimentally demonstrated for traditionally poor thermoelectric materials such as silicon [1,2]. The structure of phonon modes in low dimensional channels and their influence on thermal conductivity, however, is still ...
متن کاملFull-Band Calculations of Thermoelectric Properties of Si Nanowires and Thin Layers
Low-dimensional semiconductors are considered promising candidates for thermoelectric applications with enhanced performance because of a drastic reduction in their thermal conductivity, κl, and possibilities of enhanced power factors. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents atomistic simulations for the electronic, thermal, and ...
متن کامل