Estimating Learning Effects: A Short-Time Fourier Transform Regression Model for MEG Source Localization
نویسندگان
چکیده
Magnetoencephalography (MEG) has a high temporal resolution well-suited for studying perceptual learning. However, to identify where learning happens in the brain, one needs to apply source localization techniques to project MEG sensor data into brain space. Previous source localization methods, such as the short-time Fourier transform (STFT) method by Gramfort et al.([6]) produced intriguing results, but they were not designed to incorporate trial-by-trial learning e↵ects. Here we modify the approach in [6] to produce an STFT-based source localization method (STFT-R) that includes an additional regression of the STFT components on covariates such as the behavioral learning curve. We also exploit a hierarchical L21 penalty to induce structured sparsity of STFT components and to emphasize signals from regions of interest (ROIs) that are selected according to prior knowledge. In reconstructing the ROI source signals from simulated data, STFT-R achieved smaller errors than a two-step method using the popular minimum-norm estimate (MNE), and in a real-world human learning experiment, STFT-R yielded more interpretable results about what time-frequency components of the ROI signals were correlated with learning.
منابع مشابه
Estimating Learning E↵ects: A Short-Time Fourier Transform Regression Model for MEG Source Localization
Magnetoencephalography (MEG) has a high temporal resolution well-suited for studying perceptual learning. However, to identify where learning happens in the brain, one needs to apply source localization techniques to project MEG sensor data into brain space. Previous source localization methods, such as the short-time Fourier transform (STFT) method by Gramfort et al.([6]) produced intriguing r...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملAnalytic and Unambiguous Phase-Based Algorithm for 3-D Localization of a Single Source with Uniform Circular Array
This paper presents an analytic algorithm for estimating three-dimensional (3-D) localization of a single source with uniform circular array (UCA) interferometers. Fourier transforms are exploited to expand the phase distribution of a single source and the localization problem is reformulated as an equivalent spectrum manipulation problem. The 3-D parameters are decoupled to different spectrums...
متن کاملTight Integration of Spatial and Spectral Features for BSS with Deep Clustering Embeddings
Recent advances in discriminatively trained mask estimation networks to extract a single source utilizing beamforming techniques demonstrate, that the integration of statistical models and deep neural networks (DNNs) are a promising approach for robust automatic speech recognition (ASR) applications. In this contribution we demonstrate how discriminatively trained embeddings on spectral feature...
متن کامل