Synthetic aperture radar imaging exploiting multiple scattering
نویسندگان
چکیده
In this paper, we consider an imaging scenario, where a bi-static synthetic aperture radar (SAR) system is used in a multiple scattering environment. We consider a ray-theoretic approximation to the Green function to model a multiple scattering environment. This allows us to incorporate the multiple paths followed by the transmitted signal, thereby providing different views of the object to be imaged. However, the received signal from the multiple paths and additive thermal noise may interfere and produce artifacts when standard backprojection-based reconstruction algorithms are used. We use microlocal analysis in a statistical setting to develop a novel filtered-backprojection type image reconstruction method that not only exploits the multi-paths leading to enhancement of the reconstructed image but also suppresses the artifacts due to interference. We assume a priori knowledge of the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square error sense. We present numerical simulations to demonstrate the performance of our image reconstruction method. While the focus of this paper is on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies
Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...
متن کاملMicrowave Imaging Using SAR
Polarimetric Synthetic Aperture Radar (Pol.-SAR) allows us to implement the recognition and classification of radar targets. This article investigates the arrangement of scatterers by SAR data and proposes a new Look-up Table of Region (LTR). This look-up table is based on the combination of (entropy H/Anisotropy A) and (Anisotropy A/scattering mechanism α), which has not been reported up now. ...
متن کاملMultichannel and Wide-Angle SAR Imaging Based on Compressed Sensing
The multichannel or wide-angle imaging performance of synthetic aperture radar (SAR) can be improved by applying the compressed sensing (CS) theory to each channel or sub-aperture image formation independently. However, this not only neglects the complementary information between signals of each channel or sub-aperture, but also may lead to failure in guaranteeing the consistency of the positio...
متن کاملAn Experimental Study on Multi-static Ultra Wideband Radar Imaging with SEABED and Synthetic Aperture
This paper presents a comparison study on the application of two electromagnetic inverse scattering algorithms, SEABED [1] and the synthetic aperture method, to experimental multi-static UWB (Ultra Wide-Band) radar data. A linear UWB antenna array with a wideband frequency (1.5-8 GHz) was used for the multi-static radar measurement in a realistic environment. The results clearly show the advant...
متن کاملTwo-dimensional and full polarimetric imaging by a synthetic aperture FM-CW radar
This paper applies the principle of radar polarimetry to a synthetic aperture frequency-modulated continuous wave (FM-CW) radar and presents results based on two-dimensional (2-D) full polarimetric imaging. It is shown that the polarimetric target reflection coefficients obtained by the synthetic aperture FM-CW radar are elements of a Sinclair scattering matrix, although the coefficients are de...
متن کامل