Non-Shellable Drawings of Kn with Few Crossings

نویسندگان

  • Bernardo M. Ábrego
  • Oswin Aichholzer
  • Silvia Fernández-Merchant
  • Pedro Ramos
  • Birgit Vogtenhuber
چکیده

In the early 60s, Harary and Hill conjectured H(n) := 1 4b2 cbn−1 2 cbn−2 2 cbn−3 2 c to be the minimum number of crossings among all drawings of the complete graph Kn. It has recently been shown that this conjecture holds for so-called shellable drawings of Kn. For n ≥ 11 odd, we construct a non-shellable family of drawings of Kn with exactly H(n) crossings. In particular, every edge in our drawings is intersected by at least one other edge. So far only two other families were known to achieve the conjectured minimum of crossings, both of them being shellable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shellable drawings and the cylindrical crossing number of $K_n$

The Harary-Hill Conjecture states that the number of crossings in any drawing of the complete graph Kn in the plane is at least Z(n) := 1 4 ⌊ n 2 ⌋ ⌊ n−1 2 ⌋ ⌊ n−2 2 ⌋ ⌊ n−3 2 ⌋ . In this paper, we settle the Harary-Hill conjecture for shellable drawings. We say that a drawing D of Kn is s-shellable if there exist a subset S = {v1, v2, . . . , vs} of the vertices and a region R of D with the fo...

متن کامل

The Crossing Number of Seq-Shellable Drawings of Complete Graphs

The Harary-Hill conjecture states that for every n > 0 the complete graph on n vertices Kn, the minimum number of crossings over all its possible drawings equals H(n) := 1 4 ⌊n 2 ⌋⌊n− 1 2 ⌋⌊n− 2 2 ⌋⌊n− 3 2 ⌋ . So far, the lower bound of the conjecture could only be verified for arbitrary drawings of Kn with n ≤ 12. In recent years, progress has been made in verifying the conjecture for certain ...

متن کامل

Bishellable drawings of Kn

The Harary-Hill conjecture, still open after more than 50 years, asserts that the crossing number of the complete graph Kn is H(n) = 1 4 ⌊ n 2 ⌋⌊ n− 1 2 ⌋⌊ n− 2 2 ⌋⌊ n− 3 2 ⌋ . Ábrego et al. [3] introduced the notion of shellability of a drawing D of Kn. They proved that if D is s-shellable for some s ≥ b 2 c, then D has at least H(n) crossings. This is the first combinatorial condition on a dr...

متن کامل

Toward the rectilinear crossing number of Kn: new drawings, upper bounds, and asymptotics

Scheinerman and Wilf [SW94] assert that “an important open problem in the study of graph embeddings is to determine the rectilinear crossing number of the complete graph Kn.” A rectilinear drawing of Kn is an arrangement of n vertices in the plane, every pair of which is connected by an edge that is a line segment. We assume that no three vertices are collinear, and that no three edges intersec...

متن کامل

Geometric drawings of Kn with few crossings

We give a new upper bound for the rectilinear crossing number cr(n) of the complete geometric graph Kn. We prove that cr(n) 0.380559 (n 4 )+Θ(n3) by means of a new construction based on an iterative duplication strategy starting with a set having a certain structure of halving lines. © 2006 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014