Multi-dimensional data construction method with its application to learning from small-sample-sets

نویسندگان

  • Hsiao-Fan Wang
  • Chun-Jung Huang
چکیده

Insufficient training data is one of the major problems in neural network learning, because it leads to poor learning performance. In order to enhance an intelligent learning process, it is necessary to exploit the features of the problem from the available information even with limited scale. Due to the shortcomings of the existing methods for data generation; and also in general, a problem is described by multiple attributes, this study has first extended the developed one-dimensional Data Construction Method (DCM) for virtual data generation to multidimensional continuous space as denoted by m-DCM. Then, sensitivity analysis and numerical illustration have been carried out. By incorporating m-DCM into a supervised neural network learning process, we have shown to overcome the existing unbounded and immeasurable problems and provided a better learning performance in a comparative manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

A Multi-Criteria Analysis Model under an Interval Type-2 Fuzzy Environment with an Application to Production Project Decision Problems

Using Multi-Criteria Decision-Making (MCDM) to solve complicated decisions often includes uncertainty, which could be tackled by utilizing the fuzzy sets theory. Type-2 fuzzy sets consider more uncertainty than type-1 fuzzy sets. These fuzzy sets provide more degrees of freedom to illustrate the uncertainty and fuzziness in real-world production projects. In this paper, a new multi-criteria ana...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

Improved Sparse Multi-Class SVM and Its Application for Gene Selection in Cancer Classification

BACKGROUND Microarray techniques provide promising tools for cancer diagnosis using gene expression profiles. However, molecular diagnosis based on high-throughput platforms presents great challenges due to the overwhelming number of variables versus the small sample size and the complex nature of multi-type tumors. Support vector machines (SVMs) have shown superior performance in cancer classi...

متن کامل

Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction

Locally linear embedding (LLE) is a nonlinear dimensionality reduction method proposed recently. It can reveal the intrinsic distribution of data, which cannot be provided by classical linear dimensionality reduction methods. The application of LLE, however, is limited because of its lack of a parametric mapping between the observation and the low-dimensional output. And the large data set to b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Intell. Data Anal.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2010