Dual pH durability studies of man-made vitreous fiber (MMVF).

نویسندگان

  • J F Bauer
  • B D Law
  • T W Hesterberg
چکیده

Dissolution of fibers in the deep lung may involve both extracellular and intracellular mechanisms. This process was modeled in vitro for each environment using an experimental flow-through system to characterize both total dissolution and specific chemical changes for three representative MMVF's: a glasswool, a slagwool, and a refractory ceramic fiber (RCF). Synthetic physiological fluids at pH 4 and at pH 7.6 were used to simulate macrophage intraphagolysosomal, and extracellular environments, respectively. Actual commercial fiber, sized to rat-respirable dimension, having an average fiber diameter of 1 micron and an average length between 15 and 25 microns, was used in the experiments. Fiber dissolution was monitored through change in chemistry of the fluid collected after percolation at a constant rate through a thin bed of sample. There are great differences in total fiber dissolution rates for the different fibers. Slagwool and RCF dissolve more rapidly at pH 4 than at pH 7.6, while the reverse is true for glasswool. Dissolution is sometimes accompanied by a noticeable change in fiber morphology or dimension, and sometimes by no change. There is strong dependency on pH, which affects not only total fiber dissolution, but also the leaching of specific chemical components. This effect is different for each type of fiber, indicating that specific fiber chemistry largely controls whether a fiber dissolves or leaches more rapidly under acidic or neutral conditions. Both total dissolution rates and calculated fiber composition changes are valuable guides to interpreting in vivo behavior of man-made vitreous fibers, and demonstrate the usefulness of in vitro acellular experiments in understanding overall fiber persistence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological durability and oxidative potential of man-made vitreous fibres as compared to crocidolite asbestos fibres.

In this study we investigated relationships between redox properties and biodurability of crocidolite asbestos fibres and three different man-made vitreous fibres (MMVF): traditional stone wool fibres (MMVF 21), glass fibres (MMVF 11) and refractory ceramic fibres (RCF). Each fibre type was incubated up to 22 weeks in four different incubation media: gamble solution (GS) pH 5.0 and pH 7.4, repr...

متن کامل

Biopersistences of man-made vitreous fibers and crocidolite fibers in rat lungs following short-term exposures.

Biopersistence of commercial man-made vitreous fibers (MMVF) and crocidolite were studied in Fischer 344 rats. MMVF used were size-selected to be rat-respirable, and rats were exposed nose-only 6 h/day for 5 days to gravimetric concentrations (30 mg/m3) of two fiber glass compositions--a rockwool, and a slagwool--or to 10 mg/m3 of long-fibered crocidolite, or to filtered air. Animals were sacri...

متن کامل

Influence of airspace geometry and surfactant on the retention of man-made vitreous fibers (MMVF 10a).

Inhaled and deposited man-made vitreous fibers (MMVF) 10a (low-fluorine preparation of Schuller 901 insulation glass) were studied by electron microscopy in hamster lungs, fixed by intravascular perfusion within 23 +/- 2 min (SD) of the initial inhalation. We found fibers on the surfaces of conducting airways and alveoli. In the airways, 89% of the fibers were totally and 11% partially covered ...

متن کامل

Comparative investigations of the biodurability of mineral fibers in the rat lung.

The biodurability of various glass fibers, rockwool, and ceramic fibers was examined in rat lungs and compared with natural mineral fibers. Experiments were based on studies that have shown that the biodurability of fibers is one of the essential factors of the carcinogenic potency of these materials. Sized fractions of fibers were instilled intratracheally into Wistar rats. The evenness of dis...

متن کامل

Ubiquitous fiber exposure in selected sampling sites in Europe.

OBJECTIVES This study evaluates personal exposure to respirable inorganic and organic fibers during normal human lifetimes and assesses the order of magnitude of the contribution of inorganic fibers other than asbestos to total fiber exposure from man-made and natural sources. METHODS Four groups (suburban schoolchildren, rural retired persons, office workers, and taxi drivers), with five per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 102  شماره 

صفحات  -

تاریخ انتشار 1994