Low-Rank and Sparse Structure Pursuit via Alternating Minimization

نویسندگان

  • Quanquan Gu
  • Zhaoran Wang
  • Han Liu
چکیده

In this paper, we present a nonconvex alternating minimization optimization algorithm for low-rank and sparse structure pursuit. Compared with convex relaxation based methods, the proposed algorithm is computationally more e cient for large scale problems. In our study, we define a notion of bounded di↵erence of gradients, based on which we rigorously prove that with suitable initialization, the proposed nonconvex optimization algorithm enjoys linear convergence to the global optima and exactly recovers the underlying low rank and sparse matrices under standard conditions such as incoherence and sparsity conditions. For a wide range of statistical models such as multi-task learning and robust principal component analysis (RPCA), our algorithm provides a principled approach to learning the low rank and sparse structures with provable guarantee. Thorough experiments on both synthetic and real datasets backup our theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-network Sparsity-regularized Rank Minimization: Algorithms and Applications

Given a limited number of entries from the superposition of a low-rank matrix plus the product of a known fat compression matrix times a sparse matrix, recovery of the low-rank and sparse components is a fundamental task subsuming compressed sensing, matrix completion, and principal components pursuit. This paper develops algorithms for distributed sparsity-regularized rank minimization over ne...

متن کامل

Bridge the Gap Between Group Sparse Coding and Rank Minimization via Adaptive Dictionary Learning

Both sparse coding and rank minimization have led to great successes in various image processing tasks. Though the underlying principles of these two approaches are similar, no theory is available to demonstrate the correspondence. In this paper, starting by designing an adaptive dictionary for each group of image patches, we analyze the sparsity of image patches in each group using the rank mi...

متن کامل

Simultaneous pursuit of sparseness and rank structures for matrix decomposition

In multi-response regression, pursuit of two different types of structures is essential to battle the curse of dimensionality. In this paper, we seek a sparsest decomposition representation of a parameter matrix in terms of a sum of sparse and low rank matrices, among many overcomplete decompositions. On this basis, we propose a constrained method subject to two nonconvex constraints, respectiv...

متن کامل

Recovery guarantee of weighted low-rank approximation via alternating minimization

Many applications require recovering a ground truth low-rank matrix from noisy observations of the entries. In practice, this is typically formulated as a weighted low-rank approximation problem and solved using non-convex optimization heuristics such as alternating minimization. Such non-convex techniques have few guarantees. Even worse, weighted low-rank approximation is NP-hard for even the ...

متن کامل

Bian, Xiao. Sparse and Low-rank Modeling on High Dimensional Data: a Geometric Perspective. (under the Direction of Dr. Hamid Krim.) Sparse and Low-rank Modeling on High Dimensional Data: a Geometric Perspective

BIAN, XIAO. Sparse and Low-Rank Modeling on High Dimensional Data: A Geometric Perspective. (Under the direction of Dr. Hamid Krim.) High dimensional data exhibits distinct properties compared to its low dimensional counterpart, which causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016