Egocentric Basketball Motion Planning from a Single First-Person Image
نویسندگان
چکیده
We present a model that uses a single first-person image to generate an egocentric basketball motion sequence in the form of a 12D camera configuration trajectory, which encodes a player’s 3D location and 3D head orientation throughout the sequence. To do this, we first introduce a future convolutional neural network (CNN) that predicts an initial sequence of 12D camera configurations, aiming to capture how real players move during a one-on-one basketball game. We also introduce a goal verifier network, which is trained to verify that a given camera configuration is consistent with the final goals of real one-on-one basketball players. Next, we propose an inverse synthesis procedure to synthesize a refined sequence of 12D camera configurations that (1) sufficiently matches the initial configurations predicted by the future CNN, while (2) maximizing the output of the goal verifier network. Finally, by following the trajectory resulting from the refined camera configuration sequence, we obtain the complete 12D motion sequence. Our model generates realistic basketball motion sequences that capture the goals of real players, outperforming standard deep learning approaches such as recurrent neural networks (RNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs).
منابع مشابه
EgoTransfer: Transferring Motion Across Egocentric and Exocentric Domains using Deep Neural Networks
Mirror neurons have been observed in the primary motor cortex of primate species, in particular in humans and monkeys. A mirror neuron fires when a person performs a certain action, and also when he observes the same action being performed by another person. A crucial step towards building fully autonomous intelligent systems with humanlike learning abilities, is the capability in modeling the ...
متن کاملViewpoint and the recognition of people from their movements.
Observers can recognize other people from their movements. What is interesting is that observers are best able to recognize their own movements. Enhanced visual sensitivity to self-generated movement may reflect the contribution of motor planning processes to the visual analysis of human action. An alternative view is that enhanced visual sensitivity to self-motion results from extensive experi...
متن کاملTrajectory aligned features for first person action recognition
Egocentric videos are characterised by their ability to have the first person view. With the popularity of Google Glass and GoPro, use of egocentric videos is on the rise. Recognizing action of the wearer from egocentric videos is an important problem. Unstructured movement of the camera due to natural head motion of the wearer causes sharp changes in the visual field of the egocentric camera c...
متن کاملSocial Behavior Prediction from First Person Videos
This paper presents a method to predict the future movements (location and gaze direction) of basketball players as a whole from their first person videos. The predicted behaviors reflect an individual physical space that affords to take the next actions while conforming to social behaviors by engaging to joint attention. Our key innovation is to use the 3D reconstruction of multiple first pers...
متن کاملCustomizing First Person Image Through Desired Actions
This paper studies a problem of inverse visual path planning: creating a visual scene from a first person action. Our conjecture is that the spatial arrangement of a first person visual scene is deployed to afford an action, and therefore, the action can be inversely used to synthesize a new scene such that the action is feasible. As a proof-of-concept, we focus on linking visual experiences in...
متن کامل