Activation of apical CFTR and basolateral Ca(2+)-activated K+ channels by tetramethylpyrazine in Caco-2 cell line.
نویسندگان
چکیده
We have previously demonstrated that tetramethylpyrazine (TMP) could stimulate colonic and pancreatic anion secretion. The present study investigated the signaling pathways and cellular mechanisms underlying the effect of TMP using human colonic Caco-2 cells, with permeabilized apical or basolateral membranes, in conjunction with Ussing chamber technique, intracellular cAMP and Ca2+ measurements as well as competitive RT-PCR for mRNA expression of cystic fibrosis transmembrane conductance regulator (CFTR) and Ca(2+)-dependent Cl- channels (CACC). Basolateral addition of TMP induced a short circuit current (I(SC)) response, which could be mimicked by forskolin and 3-isobutyl-1-methylxanthine (IBMX). Adenylate cyclase inhibitor, MDL12330A, and intracellular Ca2+ chelator, BAPTA-AM, significantly inhibited the TMP-induced I(SC). In basolateral membrane-permeabilized cells, TMP, as well as forskolin and IBMX, induced an I(SC) response, which was sensitive to MDL-12330A, H89, and specific channel blocker CFTR(inh-172), but insensitive to apical application of 4-4'-didsothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and basolateral pretreatment with BAPTA-AM. In apical membrane-permeabilized cells, TMP, similar to forskolin and IBMX, produced a very small current increase, which was sensitive to K+ channel blockers, BaCl2 and tetraethylammonium (TEA), but not Chromanol 293B and charybdotoxin (ChTX), alone or combined. However, in intact Caco-2 monolayers, the TMP-induced I(SC) could be partially inhibited by ChTX. TMP (5 mM) could stimulate intracellular cAMP production. Intracellular Ca2+ was also increased by TMP (5 mM) in both Ca(2+)-containing and Ca(2+)-free bathing solutions. RT-PCR showed that the expression of CFTR in Caco-2 cells was 5.2 fold higher than that of Ca(2+)-activated Cl- channel (CACC). In conclusion, TMP stimulates Cl- secretion by activating cAMP and [Ca2+]i signaling pathways leading to subsequent activation of apical CFTR and basolateral K+ channels.
منابع مشابه
Inhibition of cAMP-Activated Intestinal Chloride Secretion by Diclofenac: Cellular Mechanism and Potential Application in Cholera
Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect re...
متن کاملCharacteristics of Kcnn4 channels in the apical membranes of an intestinal epithelial cell line.
Intermediate-conductance K(+) (Kcnn4) channels in the apical and basolateral membranes of epithelial cells play important roles in agonist-induced fluid secretion in intestine and colon. Basolateral Kcnn4 channels have been well characterized in situ using patch-clamp methods, but the investigation of Kcnn4 channels in apical membranes in situ has been hampered by a layer of mucus that prevents...
متن کاملRole of TRPC3 channels in ATP-induced Ca2+ signaling in principal cells of the inner medullary collecting duct.
The transient receptor potential channel TRPC3 is exclusively expressed in the apical membrane of principal cells of the collecting duct (CD) both in vivo and in the mouse CD cell line IMCD-3. Previous studies revealed that ATP-induced apical-to-basolateral transepithelial Ca(2+) flux across IMCD-3 monolayers is increased by overexpression of TRPC3 and attenuated by a dominant negative TRPC3 co...
متن کاملRole of TRPC3 channels in ATP-induced Ca signaling in principal cells of the inner medullary collecting duct
Goel M, Schilling WP. Role of TRPC3 channels in ATP-induced Ca signaling in principal cells of the inner medullary collecting duct. Am J Physiol Renal Physiol 299: F225–F233, 2010. First published April 21, 2010; doi:10.1152/ajprenal.00670.2009.—The transient receptor potential channel TRPC3 is exclusively expressed in the apical membrane of principal cells of the collecting duct (CD) both in v...
متن کاملCFTR-Adenylyl Cyclase I Association Responsible for UTP Activation of CFTR in Well-Differentiated Primary Human Bronchial Cell Cultures
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca(2+)-activated chloride channel (CaCC) is activated by Ca(2+) agonists like UTP. We found that most chloride current elicited by Ca(2+) agonists in primary cultures of human bronchial epithelial cells is me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of pharmacology
دوره 510 3 شماره
صفحات -
تاریخ انتشار 2005