Disruption of F-actin stimulates hypertonic activation of the BGT1 transporter in MDCK cells.

نویسندگان

  • Jeremy L Bricker
  • Shaoyou Chu
  • Stephen A Kempson
چکیده

Many membrane transport systems are altered by changes in the state of the actin cytoskeleton. Although an intact microtubule network is required for hypertonic activation of the betaine transporter (BGT1), the possible role of the actin cytoskeleton is unknown. BGT1 function in Madin-Darby canine kidney cell monolayers was assessed as Na(+)-dependent uptake of GABA, following disassembly of F-actin by cytochalasin D (1.0 microM) or latrunculin A (0.6 microM). Both drugs significantly increased (P < 0.001) the activation of BGT1 transport by 24-h hypertonicity (500 mosmol/kgH(2)O). In contrast, the hypertonic upregulation of Na(+)-dependent alanine uptake remained unaltered by cytochalasin D. Disruption of F-actin did not interfere with downregulation of BGT1 transport when cells were transferred from hypertonic to isotonic medium. Immunofluorescence staining revealed colocalization of BGT1 and F-actin at the plasma membrane of hypertonic cells. Surface biotinylation revealed no major change in BGT1 protein abundance after cytochalasin D action, suggesting that stimulation of hypertonic activation of BGT1 transport is due to increased activity of existing BGT1 transporters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcellular redistribution of the renal betaine transporter during hypertonic stress.

The betaine transporter (BGT1) protects cells in the hypertonic renal inner medulla by mediating uptake and accumulation of the osmolyte betaine. Transcriptional regulation plays an essential role in upregulation of BGT1 transport when renal cells are exposed to hypertonic medium for 24 h. Posttranscriptional regulation of the BGT1 protein is largely unexplored. We have investigated the distrib...

متن کامل

MEKK3-mediated signaling to p38 kinase and TonE in hypertonically stressed kidney cells.

Mitogen-activated protein kinase (MAPK) cascades contain a trio of kinases, MAPK kinase kinase (MKKK) --> MAPK kinase (MKK) --> MAPK, that mediate a variety of cellular responses to different signals including hypertonicity. The signaling response to hypertonicity is conserved across evolution from yeast to mammals in that it involves activation of p38/SAPK. However, very little is known about ...

متن کامل

Mutation of a single threonine in the cytoplasmic NH2 terminus disrupts trafficking of renal betaine-GABA transporter 1 during hypertonic stress.

Betaine is an important osmolyte and is, compared with other organs, much more abundant in the kidneys, where it enters cells in the medulla by betaine-GABA transporter 1 (BGT1) to balance osmoregulation in the countercurrent system. In wild-type (wt-)BGT1-expressing oocytes, GABA-mediated currents were diminished by preincubation of oocytes with 100 nM PMA or 5 μM dioctanoyl-sn-glycerol, activ...

متن کامل

Inhibition of the renal betaine transporter by calcium ions.

Chronic upregulation of the renal betaine/GABA transporter (BGT1) by hypertonic stress has been well documented, but it is not known whether BGT1 can be regulated acutely after insertion in the basolateral plasma membrane. Related transporters, such as the rat brain GABA transporter, can be rapidly removed from the plasma membrane through activation of G protein-coupled receptors. The goal of t...

متن کامل

PKC induces internalization and retention of the EAAC1 glutamate transporter in recycling endosomes of MDCK cells.

Here we show that stimulation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) treatment induces a time-dependent decrease in glutamate transport activity due to relocalization of the excitatory amino acid carrier 1 (EAAC1) glutamate transporter from the apical surface of polarized epithelial Madin-Darby canine kidney (MDCK) cells to intracellular compartments. The PKC-induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 284 5  شماره 

صفحات  -

تاریخ انتشار 2003