Lean and Obese Coronary Perivascular Adipose Tissue Impairs Vasodilation via Differential Inhibition of Vascular Smooth Muscle K+ Channels.
نویسندگان
چکیده
OBJECTIVE The effects of coronary perivascular adipose tissue (PVAT) on vasomotor tone are influenced by an obese phenotype and are distinct from other adipose tissue depots. The purpose of this investigation was to examine the effects of lean and obese coronary PVAT on end-effector mechanisms of coronary vasodilation and to identify potential factors involved. APPROACH AND RESULTS Hematoxylin and eosin staining revealed similarities in coronary perivascular adipocyte size between lean and obese Ossabaw swine. Isometric tension studies of isolated coronary arteries from Ossabaw swine revealed that factors derived from lean and obese coronary PVAT attenuated vasodilation to adenosine. Lean coronary PVAT inhibited K(Ca) and KV7, but not KATP channel-mediated dilation in lean arteries. In the absence of PVAT, vasodilation to K(Ca) and KV7 channel activation was impaired in obese arteries relative to lean arteries. Obese PVAT had no effect on K(Ca) or KV7 channel-mediated dilation in obese arteries. In contrast, obese PVAT inhibited KATP channel-mediated dilation in both lean and obese arteries. The differential effects of obese versus lean PVAT were not associated with changes in either coronary KV7 or K(ATP) channel expression. Incubation with calpastatin attenuated coronary vasodilation to adenosine in lean but not in obese arteries. CONCLUSIONS These findings indicate that lean and obese coronary PVAT attenuates vasodilation via inhibitory effects on vascular smooth muscle K(+) channels and that alterations in specific factors such as calpastatin are capable of contributing to the initiation or progression of smooth muscle dysfunction in obesity.
منابع مشابه
Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity.
BACKGROUND This investigation examined the mechanisms by which coronary perivascular adipose tissue (PVAT)-derived factors influence vasomotor tone and the PVAT proteome in lean versus obese swine. METHODS AND RESULTS Coronary arteries from Ossabaw swine were isolated for isometric tension studies. We found that coronary (P=0.03) and mesenteric (P=0.04) but not subcutaneous adipose tissue aug...
متن کاملRegulation of Vascular Smooth Muscle Tone by Adipose-Derived Contracting Factor
Obesity and arterial hypertension, important risk factors for atherosclerosis and coronary artery disease, are characterized by an increase in vascular tone. While obesity is known to augment vasoconstrictor prostanoid activity in endothelial cells, less is known about factors released from fat tissue surrounding arteries (perivascular adipose). Using lean controls and mice with either monogeni...
متن کاملP-365 Visceral Perivascular Adipose Tissue Regulates Arterial Tone of Small Mesenteric Arteries
Increased visceral adipose tissue in obesity is associated with adverse cardiovascular events and hypertension. Visceral adipose tissue surrounds mesenteric arteries and may produce vasoactive substances that influence vascular contraction. We tested the hypothesis that perivascular adipose tissue modulates contraction of small, resistance-sized mesenteric artery ring preparations. We studied m...
متن کاملAdvanced Glycation End Products Impair Voltage-Gated K+ Channels-Mediated Coronary Vasodilation in Diabetic Rats
BACKGROUND We have previously reported that high glucose impairs coronary vasodilation by reducing voltage-gated K+ (Kv) channel activity. However, the underlying mechanisms remain unknown. Advanced glycation end products (AGEs) are potent factors that contribute to the development of diabetic vasculopathy. The aim of this study was to investigate the role of AGEs in high glucose-induced impair...
متن کاملMature adipocytes and perivascular adipose tissue stimulate vascular smooth muscle cell proliferation: effects of aging and obesity.
Adipocytes and perivascular adipose tissue are emerging as regulators of vascular function. The effects of adipocytes and perivascular adipose tissue on human smooth muscle cell (SMC) proliferation were investigated. Conditioned medium was prepared from cultured premature and differentiated 3T3-L1 adipocytes and from periaortic adipose tissue from young (3 mo) and old (24 mo) Wistar-Kyoto (WKY)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2015