Asymmetry in crystal facet dynamics of homoepitaxy by a continuum model
نویسندگان
چکیده
In the absence of external material deposition, crystal surfaces usually relax to become flat by decreasing their free energy. We study an asymmetry in the relaxation of macroscopic plateaus, facets, of a periodic surface corrugation in 1+1 dimensions via a continuum model below the roughening transition temperature. The model invokes a highly degenerate parabolic partial differential equation (PDE) for surface diffusion, which is related to the weighted-H−1 (nonlinear) gradient flow of a convex, singular surface free energy in homoepitaxy. The PDE is motivated both by an atomistic broken-bond model and a mesoscale model for steps. By constructing an explicit solution to the PDE, we demonstrate the lack of symmetry in the evolution of top and bottom facets in periodic surface profiles. Our explicit, analytical solution is compared to numerical simulations of the PDE via a regularized surface free energy.
منابع مشابه
Discrete and Continuum Relaxation Dynamics of Faceted Crystal Surface in Evaporation Model
We study the connection of two scales in the relaxation of axisymmetric crystal surfaces with a facet via an ad hoc evaporation-condensation model. We provide numerical evidence that the continuum slope determined under “natural boundary conditions” at the facet, which are derived solely from continuum thermodynamics, follows closely the underlying discrete dynamics. At the microscale, the disc...
متن کاملInelastic Continuum Modeling of Carbon Nanotube,s Behavior Using Finite Element Method
This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nanotube (SWCNT) in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the SWCNT, continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results, an elasto-plastic...
متن کاملRole of chemical potential in relaxation of faceted crystal structure.
Below the roughening transition, crystal surfaces have macroscopic plateaus, facets, whose evolution is driven by the microscale dynamics of steps. A long-standing puzzle was how to reconcile discrete effects in facet motion with fully continuum approaches. We propose a resolution of this issue via connecting, through a jump condition, the continuum-scale surface chemical potential away from th...
متن کاملTheoretical analysis of mound slope selection during unstable multilayer growth.
A "step dynamics" model is developed for mound formation during multilayer homoepitaxy. Downward funneling of atoms deposited at step edges is incorporated and controls mound slope selection. Behavior of the selected slope differs from that predicted by phenomenological continuum treatments where the lateral mass current vanishes identically. Instead, this current is shown to vary periodically ...
متن کاملDiscrete and Continuum Relaxation Dynamics of Faceted Crystal Surface in Evaporation Models
We study linkages of two scales in the relaxation of an axisymmetric crystal with a facet in evaporation-condensation kinetics. The macroscale evolution is driven by the motion of concentric circular, repulsively interacting line defects (steps) which exchange atoms with the vapor. At the microscale, the step velocity is proportional to the variation of the total step free energy, leading to la...
متن کامل