Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries
نویسندگان
چکیده
Lithium-sulfur batteries show great potential to compete with lithium-ion batteries due to the fact that sulfur can deliver a high theoretical capacity of 1672 mAh/g and a high theoretical energy density of 2500 Wh/kg. But it has several problems to be solved in order to achieve high sulfur utilization with high Coulombic efficiency and long cycle life of Li-S batteries. These problems are mainly caused by the dissoluble polysulfide species, which are a series of complex reduced sulfur products, associating with shuttle effect between electrodes as well as side reactions on lithium metal anode. To alleviate these challenges, we developed a sulfur-carbon nanotube (S/SWNT) composite coated with polyaniline (PANI) polymer as polysulfide block to achieve high sulfur utilization, high Coulombic efficiency, and long cycle life. The PANI coated S/SWNT composite showed a superior specific capacity of 1011 mAh/g over 100 cycles and a good rate retention, demonstrating the synergic contribution of porous carbon and conducting polymer protection to address challenges underlying sulfur cathode.
منابع مشابه
Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium-sulfur batteries
Due to the extraordinarily high theoretical capacity of sulfur (1675 mAh g 1), the lithiumesulfur (LieS) battery has been considered a promising candidate for future high-energy battery applications. LieS batteries, however, have suffered from limited cycle lives, mainly due to the formation of soluble polysulfides, which prevent the practical application of this attractive technology. The enca...
متن کاملImproving the performance of Lithium-Sulfur Batteries using Sulfur-(TiO2/SiO2) yolk–shell Nanostructure
Lithium-Sulfur (Li-S) batteries are considered as one of the promising candidates for next-generation Li batteries in near future. Although, these batteries are suffering from certain drawbacks such as rapid capacity fading during the charge and discharge process due to the dissolution of polysulfides. In this paper, Sulfur/metal oxide (TiO2 and SiO2) yolk–shell structures have been successfull...
متن کاملThe effect of polyaniline on TiO2 nanoparticles as anode materials for lithium ion batteries
Polyaniline (PANI) additives have been shown to have a significant effect on titanium dioxide (TiO2) nanoparticles as lithium ion battery anode materials. TiO2/PANI composites were prepared using a solid coating method with different ratios of PANI and then characterized using XRD and SEM. These composites have shown increased reversible capacity compared with pure TiO2. At the current rate of ...
متن کاملAn Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes
Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...
متن کاملPolyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery
An activated carbon aerogel (ACA-500) with high surface area (1765 m2 g-1), pore volume (2.04 cm3 g-1), and hierarchical porous nanonetwork structure is prepared through direct activation of organic aerogel (RC-500) with a low potassium hydroxide ratio (1:1). Based on this substrate, a polyaniline (PANi)-coated activated carbon aerogel/sulfur (ACA-500-S@PANi) composite is prepared via a simple ...
متن کامل