Finite-Sample Analysis of Fixed-k Nearest Neighbor Density Functional Estimators

نویسندگان

  • Shashank Singh
  • Barnabás Póczos
چکیده

We provide finite-sample analysis of a general framework for using k-nearest neighbor statistics to estimate functionals of a nonparametric continuous probability density, including entropies and divergences. Rather than plugging a consistent density estimate (which requires k → ∞ as the sample size n → ∞) into the functional of interest, the estimators we consider fix k and perform a bias correction. This is more efficient computationally, and, as we show in certain cases, statistically, leading to faster convergence rates. Our framework unifies several previous estimators, for most of which ours are the first finite sample guarantees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Estimation of Density using Plotless Density Estimator Criteria in Arasbaran Forest

    Sampling methods have a theoretical basis and should be operational in different forests; therefore selecting an appropriate sampling method is effective for accurate estimation of forest characteristics. The purpose of this study was to estimate the stand density (number per hectare) in Arasbaran forest using a variety of the plotless density estimators of the nearest neighbors sampling me...

متن کامل

Kernel and Nearest Neighbor Estimation of a Conditional Quantile

Let (Xl'Z1)' (X2,Z2),· .. ,(Xn,Zn) be LLd. as (X,Z), Z taking values in Rl, and for o < p < 1, let ep(x) denote the conditional p-quantile of Z given X=x, i.e., P(Z ~ ep(x) IX=x) = p. In this paper, kernel and nearest neighbor estimators of ep(x) are proposed. As a first step in studying the asymptotics of these estimates, Bahadur type ~ representations of the sample conditional quantile functi...

متن کامل

A ug 2 00 7 Uniform - in - bandwidth functional limit laws for the increments of the normed sample quantile process ; application to nearest - neighbor estimates

In the present paper, we establish a functional limit law of the logarithm for the increments of the normed sample quantile process based upon a random sample of size n → ∞. We extend a limit law obtained by Deheuvels and Mason [9], showing that their results hold uniformly over the bandwidth h, restricted to vary in [h n , h n ], where {h′ n }n≥1 and {h′′ n}n≥1 are appropriate non-random seque...

متن کامل

Confidence Intervals Based On Survey Data With Nearest Neighbor Imputation

Nearest neighbor imputation (NNI) is a popular imputation method used to compensate for item nonresponse in sample surveys. Although previous results showed that the NNI sample mean and quantiles are consistent estimators of the population mean and quantiles, large sample inference procedures, such as asymptotic confidence intervals for the population mean and quantiles, are not available. For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016