Expression and localization of carnitine/organic cation transporter OCTN1 and OCTN2 in ocular epithelium.

نویسندگان

  • Qian Garrett
  • Shunjiang Xu
  • Peter A Simmons
  • Joseph Vehige
  • Judith L Flanagan
  • Mark D Willcox
چکیده

PURPOSE The existence of an organic cation transport process in rabbit cornea and conjunctiva that mediates absorption of carnitine has previously been suggested. This study was conducted to determine the expression and localization of the carnitine/organic cation transporter (OCTN1 and OCTN2) in corneal or conjunctival epithelium. METHODS Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for OCTN1 and OCTN2 mRNA expression in cultured human corneal-limbal epithelial (HCLE) or human conjunctival epithelial (HCjE) cells. Immunofluorescence staining with polyclonal antibody against human OCTN1 or OCTN2 was performed to investigate transporter expression in ocular epithelial cells or rabbit corneal and conjunctival epithelium. Polarity of the transporter expression was determined using Western blot analysis of the apical or basal membrane proteins extracted from the cultured cells. Apical or basal uptake of [H(3)]-L-carnitine was determined using the polarized epithelial cells grown onto collagen-coated porous filter support. RESULTS OCTN1 and OCTN2 mRNA expression was detected in HCLE and HCjE cells of rabbits and humans. OCTN1 and OCTN2 were predominately localized in the apical membranes of the cells. HCLE and HCjE cells were able to take up L-carnitine; most carnitine uptake occurred through the apical surfaces. CONCLUSIONS This report is the first to document OCTN1 and OCTN2 expression in human corneal and conjunctival epithelial cells. These findings suggest potential involvement of OCTN1 and OCTN2 in the transport of carnitine in ocular tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title Pharmacological and pathophysiological roles of carnitine / organic

The carnitine/organic cation transporter (OCTN) family consists of three transporter isoforms, i.e., OCTN1 (SLC22A4) and OCTN2 (SLC22A5) in humans and animals and Octn3 (Slc22a21) in mice. These transporters are physiologically essential to maintain appropriate systemic and tissue concentrations of carnitine by regulating its membrane transport during intestinal absorption, tissue distribution,...

متن کامل

Transport of L-carnitine in human corneal and conjunctival epithelial cells

PURPOSE Previously we demonstrated expression and localization of carnitine/organic cation transporters, OCTN1 and OCTN2, in human corneal and conjunctival epithelia. The present study aimed to examine the characteristics of L-carnitine transporters in cultured human limbal corneal (HCLE) and conjunctival epithelial (HCjE) cells. METHODS Time-course, Na(+)-dependence, kinetics, energy- and pH...

متن کامل

PDZ adaptor protein PDZK2 stimulates transport activity of organic cation/carnitine transporter OCTN2 by modulating cell surface expression.

A part of the organic cation transporter families (OCT3, OCTN1, and OCTN2) has recently been identified to physically interact with PDZ (PSD95, Dlg, and ZO1) domain-containing proteins, although the physiological relevance of such interaction has not yet been fully examined. Here we have examined the stimulatory effect of PDZK2 [also named NaPi-Cap2 and intestinal and kidney-enriched PDZ protei...

متن کامل

Functional genetic variation in the basal promoter of the organic cation/carnitine transporters OCTN1 (SLC22A4) and OCTN2 (SLC22A5).

The organic cation/ergothioneine transporter OCTN1 (SLC22A4) and the high-affinity carnitine transporter OCTN2 (SLC22A5), play an important role in the disposition of xenobiotics and endogenous compounds. Here, we analyzed the sequence of the proximal promoter regions of OCTN1 and OCTN2 in four ethnic groups and determined the effects of the identified genetic variants on transcriptional activi...

متن کامل

Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway.

Most inhaled beta(2)-adrenergic agonist and anticholinergic bronchodilators have low lipid solubility because of their transient or permanent positive net charge at physiologic pH. Airway absorption of these cationic drugs is incompletely understood. We examined carrier-mediated mechanisms of cationic drug uptake by human airway epithelia. Airway tissues and epithelial cells, obtained from lung...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 49 11  شماره 

صفحات  -

تاریخ انتشار 2008