Using Power-Up SRAM State of Atmel ATmega1284P Microcontrollers as Physical Unclonable Function for Key Generation and Chip Identification
نویسندگان
چکیده
Secret keys are usually stored in an nonvolatile memory, which can be hard to secure. An alternative is to generate the keys “on-the-fly” by using the inherent uniqueness of a device based on the manufacturing process variations. This is realized by physical unclonable functions (PUFs). A promising approach is to construct an intrinsic PUF based on SRAM memory, since many electronic devices have embedded SRAM. However, using a SRAM as PUF requires the stability of the SRAM fingerprint under a wide variety of conditions, and the SRAM fingerprint must be unique. In this paper, we show that a 16Kbyte SRAM fingerprint contains sufficient entropy to uniquely identify each chip. In addition, if a postprocessing error correction is applied, the fingerprint can be used to generate a stable 4Kbit key.
منابع مشابه
Detecting Recycled Commodity SoCs: Exploiting Aging-Induced SRAM PUF Unreliability
A physical unclonable function (PUF), analogous to a human fingerprint, has gained an enormous amount of attention from both academia and industry. SRAM PUF is among one of the popular silicon PUF constructions that exploits random initial power-up states from SRAM cells to extract hardware intrinsic secrets for identification and key generation applications. The advantage of SRAM PUFs is that ...
متن کاملDRV-Fingerprinting: Using Data Retention Voltage of SRAM Cells for Chip Identification
Physical unclonable functions (PUFs) produce outputs that are a function of minute random physical variations. Promoted for low-cost authentication and resistance to counterfeiting, many varieties of PUFs have been used to enhance the security and privacy of RFID tags. To different extents, applications for both identification and authentication require a PUF to produce a consistent output over...
متن کاملA Physical Unclonable Function Chip Exploiting Variation in SRAM Bitcells
We propose a chip identification (ID) generating scheme with random variation of transistor characteristics in SRAM bitcells. In the proposed scheme, a unique fingerprint is generated by grounding both bitlines. It has high speed, and it can be implemented in a very small area overhead. We fabricated test chips in a 65-nm process and obtained 12,288 sets of unique 128-bit fingerprints, which ar...
متن کاملA 128-bit Chip Identification Generating Scheme Exploiting Load Transistors' Variation in SRAM Bitcells
We propose a chip identification (ID) generating scheme with random variation of transistor characteristics in SRAM bitcells. In the proposed scheme, a unique fingerprint is generated by grounding both bitlines in write operations. Through minor modifications, this scheme can be implemented for existing SRAMs. It has high speed, and it can be implemented in a very small area overhead. The gener...
متن کاملRecombination of Physical Unclonable Functions
A new Physical Unclonable Function (PUF) construction is described, by treating silicon unique features extracted from PUF circuits as “genetic material” unique to each silicon, and recombining this chip-unique material in a way to obtain a combination of advantages not possible with the original PUF circuits, including altering PUF output statistics to better suit PUF-based key generation and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information Security Journal: A Global Perspective
دوره 22 شماره
صفحات -
تاریخ انتشار 2013