Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy.
نویسندگان
چکیده
Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). The purpose of this study was to address image lag in target tracking and its influence on the accuracy of tumor tracking. Fluoroscopic images were obtained using a direct type of dynamic FPD. Image lag properties were measured without test devices according to IEC 62220-1. Modulation transfer function (MTF) and profile curves were measured on the edges of a moving tungsten plate at movement rate of 10 and 20 mm/s, covering lung tumor movement of normal breathing. A lung tumor and metal sphere with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the image lag for the first frame after X-ray cutoff was 2.0% and decreased to less than 0.1% in the fifth frame. In the measurement of profile curves on the edges of static and moving tungsten material plates, the effect of image lag was seen as blurred edges of the plate. The blurred edges of a moving target were indicated as reduction of MTF. However, the target could be traced within an error of ± 5 mm. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation.
منابع مشابه
Title Simulation approach for the evaluation of tracking accuracy inradiotherapy : A preliminary study
40 Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray 41 imaging with a dynamic flat-panel detector (FPD). It is important to keep the patient dose as 42 low as possible while maintaining tracking accuracy. Simulation approach would be helpful to 43 optimize the imaging conditions. This study was performed to develop a computer simulation 44 platform base...
متن کاملSimulation approach for the evaluation of tracking accuracy in radiotherapy: a preliminary study
Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). It is important to keep the patient dose as low as possible while maintaining tracking accuracy. A simulation approach would be helpful to optimize the imaging conditions. This study was performed to develop a computer simulation platform based on a noise ...
متن کاملTitle Pulmonary blood flow evaluation using a dynamic flat - panel detector
Purpose Pulmonary ventilation and circulation dynamics are reflected on fluoroscopic images as changes in X-ray translucency. The purpose of this study was to investigate the feasibility of non-contrast functional imaging using a dynamic flat-panel detector (FPD). Methods Dynamic chest radiographs of 20 subjects (Abnormal, n=12; Normal, n=8) were obtained using the FPD system. Image analysis wa...
متن کاملEvaluation of the Portal Imaging System Performance for an Elekta Precise Linac in Radiotherapy
Introduction: Electronic portal imaging devices (EPIDs) provide two- and three-dimensional planar and volumetric cone beam images to improve the accuracy of radiation treatment delivery. Periodic quality assurance (QA) of EPIDs is essential for dosimetric verification in radiotherapy. In this study, a QA program was implemented to evaluate the function of the EPID to be confident in applying co...
متن کاملDynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback
Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of radiation research
دوره 51 6 شماره
صفحات -
تاریخ انتشار 2010