Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control

نویسندگان

  • Susan A. Frost
  • Brian R. Taylor
  • Marc Bodson
چکیده

Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot’s command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective Adaptive Control for Load Alleviation and Drag Minimization of Flexible Aircraft

This paper describes a multi-objective flight control system design for flexible aircraft to take advantage of the availability of multi-functional distributed flight control surfaces to simultaneously gain aerodynamic efficiency, maneuver and gust load alleviation, and aeroservoelastic (ASE) mode suppression while maintaining traditional pilot command-tracking tasks. A multi-objective optimal ...

متن کامل

Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight materia...

متن کامل

Gust Load Alleviation Control for Very Flexible Aircraft

This paper focuses on the development of a wind gust load alleviation control system for implementation in very flexible aircraft. The gust load alleviation system is designed using Linear Quadratic Gaussian (LQG) control techniques, and it is based on a nonlinear model of the coupled rigid-body and elastic modes of a very flexible aircraft. The nonlinear model contains the dynamics of the airc...

متن کامل

A Comprehensive Robust Adaptive Controller for Gust Load Alleviation

The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The prop...

متن کامل

Gust Load Alleviation Based on Model Predictive Control

Weight reduction is a typical design goal for modern aircraft. If gust encounters (as required by Certification Specification 25) are sizing conditions of parts of the airframe, this can be achieved (for example) by an active gust load alleviation system that reduces the gust load level down to the level of the next design condition, which might be the design loads from maneuver conditions. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012