A local fitting algorithm for converting planar curves to B-splines

نویسندگان

  • Chongyang Deng
  • Xunnian Yang
چکیده

In this paper we present a local fitting algorithm for converting smooth planar curves to B-splines. For a smooth planar curve a set of points together with their tangent vectors are first sampled from the curve such that the connected polygon approximates the curve with high accuracy and inflexions are detected by the sampled data efficiently. Then, a G1 continuous Bézier spline curve is obtained by fitting the sampled data with shape preservation as well as within a prescribed accuracy. Finally, the Bézier spline is merged into a C2 continuous B-spline curve by subdivision and control points adjustment. The merging is guaranteed to be within another error bound and with no more inflexions than the Bézier spline. In addition to shape preserving and error control, this conversion algorithm also benefits that the knots are selected automatically and adaptively according to local shape and error bound. A few experimental results are included to demonstrate the validity and efficiency of the algorithm. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capturing Outlines of Planar Generic Images by Simultaneous Curve Fitting and Sub-division

In this paper, a new technique has been designed to capture the outline of 2D shapes using cubic B´ezier curves. The proposed technique avoids the traditional method of optimizing the global squared fitting error and emphasizes the local control of data points. A maximum error has been determined to preserve the absolute fitting error less than a criterion and it administers the process of curv...

متن کامل

A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers

In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...

متن کامل

Estimating Criteria for Fitting B-spline Curves: Application to Data Compression

In this paper, we analyse the different parameter choices for fitting B-spline curves. New estimating criteria for data approximation are introduced in order to estimate the results. The definitions of norms correspond to a global analysis of the curve. Other criteria are based on a local analysis. We present a new method for data compression using fitting B-splines and compare it to usual ones.

متن کامل

Using Wavelets and Splines to Forecast Non-Stationary Time Series

 This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...

متن کامل

Curve fitting with arc splines for NC toolpath generation

Arc splines are important in automatically controlled complex curve cutting process. However, the problem of how to determine the parameter of arcs according to desired curve fitting accuracy has not been completely solved. This paper presents a new algorithm for finding arbitrarily close bi-arc splines. It is based on research on the characteristics of spiral curves. The algorithm has several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2008