A Fast Calculation of Metric Scores for Learning Bayesian Network

نویسندگان

  • Qiang Lü
  • Xiaoyan Xia
چکیده

Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning structure of Bayesian network (BN for short) based on metric scoring, is introduced as an example task which heavily relies on frequent counting. A fast calculation method for frequent counting enhanced with two cache layers is then presented for learning BN . We name this speedup technique RC solution. The main contribution of RC is to eliminate comparison operations for frequent counting by introducing a multi-radix number system calculation. Both mathematical analysis and empirical comparison between RC and state-of-the-art solution are conducted. The results show that RC is dominant prior over the current state-of-the-art solution at least in solving the problem of learning BN . Further discussions on how to extend RC to other similar learning tasks are also developed at the end of this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

Learning Bayesian Networks is NP-Hard

Algorithms for learning Bayesian networks from data have two components: a scoring metric and a search procedure. The scoring metric computes a score reeecting the goodness-of-t of the structure to the data. The search procedure tries to identify network structures with high scores. Heckerman et al. (1994) introduced a Bayesian metric, called the BDe metric, that computes the relative posterior...

متن کامل

Learning Bayesian Networks is NP-Complete

Algorithms for learning Bayesian networks from data have two components: a scoring metric and a search procedure. The scoring metric computes a score re ecting the goodness-oft of the structure to the data. The search procedure tries to identify network structures with high scores. Heckerman et al. (1995) introduce a Bayesian metric, called the BDe metric, that computes the relative posterior p...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007