A polyhedral Markov field - pushing the Arak-Surgailis construction into three dimensions

نویسنده

  • Tomasz Schreiber
چکیده

The purpose of the paper is to construct a polyhedral Markov field in R in analogy with the planar construction of the original Arak (1982) polygonal Markov field. We provide a dynamic construction of the process in terms of evolution of two-dimensional multi-edge systems tracing polyhedral boundaries of the field in three-dimensional timespace. We also give a general algorithm for simulating Gibbsian modifications of the constructed polyhedral field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dobrushin-Kotecký-Schlosman theorem for polygonal Markov fields in the plane

We establish a version of the Dobrushin-Kotecký-Schlosman phase separation theorem for the length-interacting Arak-Surgailis polygonal Markov fields with V-shaped nodes.

متن کامل

Random dynamics and thermodynamic limits for polygonal Markov fields in the plane

We construct random dynamics on collections of non-intersecting planar contours, leaving invariant the distributions of lengthand area-interacting polygonal Markov fields with V-shaped nodes. The first of these dynamics is based on the dynamic construction of consistent polygonal fields, as presented in the original articles by Arak (1982) and Arak & Surgailis (1989, 1991), and it provides an e...

متن کامل

Dobrushin-Kotecký-Shlosman theorem for polygonal Markov fields in the plane

We consider the so-called length-interacting Arak-Surgailis polygonal Markov fields with V-shaped nodes – a continuum and isometry invariant process in the plane sharing a number of properties with the two-dimensional Ising model. For these polygonal fields we establish a low-temperature phase separation theorem in the spirit of the Dobrushin-Kotecký-Shlosman theory, with the corresponding Wulf...

متن کامل

The Discrete and Continuum Broken Line Process

In this work we introduce the discrete-space broken line process (with discrete and continues parameter values) and derive some of its properties. We explore polygonal Markov fields techniques developed by Arak-Surgailis. The discrete version is presented first and a natural continuum generalization to a continuous object living on the discrete lattice is then proposed and studied. The broken l...

متن کامل

Perfect simulation for length-interacting polygonal Markov fields in the plane

The purpose of this paper is to construct perfect samplers for length-interacting Arak–Clifford–Surgailis polygonal Markov fields in the plane with nodes of order 2 (V-shaped nodes). This is achieved by providing for the polygonal fields a hard core marked point process representation with individual points carrying polygonal loops as their marks, so that the coupling from the past and clan of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007