A reduced lattice model for option pricing under regime-switching
نویسندگان
چکیده
We present a binomial approach for pricing contingent claims when the parameters governing the underlying asset process follow a regime-switching model. In each regime, the asset dynamics is discretized by a Cox-Ross-Rubinstein lattice derived by a simple transformation of the parameters characterizing the highest volatility tree, which allows a simultaneous representation of the asset value in all the regimes. Derivative prices are computed by forming expectations of their payoffs over the lattice branches. Quadratic interpolation is invoked in case of regime changes, and the switching among regimes is captured through a transition probability matrix. An econometric analysis is provided to pick reasonable volatility values for option pricing, for which we show some comparisons with the existing models to assess the goodness of the proposed approach.
منابع مشابه
A Moment Approach to Pricing Exotic Options Under Regime-Switching
The switching of market regimes has a significant impact on derivative pricing that exposes investors to an additional level of risk. However, deriving the exact price of exotic options under regime-switching is still at the early stages of development. In this paper, we consider deriving tight upper and lower bounds for the price of a wide class of exotic options under regime switching. We sho...
متن کاملPricing exotic options under regime switching: A Fourier transform method
This paper considers the valuation of exotic options (i.e. digital, barrier, and lookback options) in a Markovian, regime-switching, Black-Scholes model. In Fourier space, analytical expressions for the option prices are derived via the theory on matrix Wiener-Hopf factorizations. A comparison to numerical alternatives, i.e. the Brownian bridge algorithm or a finite element scheme, demonstrates...
متن کاملPricing forward starting options under regime switching jump diffusion models
Abstract: This paper studies the pricing of forward starting options under regime switching jump diffusion models. We suppose that a market economy has only two states, one is a stable state, the other is a high volatility state. The dynamics of a risky asset is modeled by a geometry Brownian motion when the market state is stable, otherwise, it follows a jump diffusion model. We propose two ty...
متن کاملNumerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process
In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...
متن کاملOption Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کامل