Absolute bioavailability of 2'-O-(2-methoxyethyl)-modified antisense oligonucleotides following intraduodenal instillation in rats.
نویسندگان
چکیده
Three modified 20-mer antisense oligonucleotides targeted to human intercellular adhesion molecule-1 mRNA were characterized for their presystemic stability and oral bioavailability compared with a first-generation phosphorothioate oligodeoxynucleotide (PS ODN), ISIS 2302. The three modified oligonucleotides contained 2'-O-(2-methoxyethyl) (2'-O-MOE) ribose sugar modifications on a portion, or on all of the nucleotides in the antisense sequence. In vitro metabolism studies conducted in various gastrointestinal and digestive tissue preparations indicated substantial improvement in stability of 2'-O-MOE-modified oligonucleotides. In addition, in vivo presystemic stability of these oligonucleotides was monitored in rats following intraduodenal administration. By 8 h after administration, only chain-shortened metabolites of the PS ODN were recovered in the gastrointestinal contents. In contrast, approximately 50% of the 2'-O-MOE ribose-modified (partial) compound remained intact (20-mer) by 8 h following administration. Both of the fully modified compounds (2'-O-MOE PO and PS) were completely stable with no measurable metabolites observed within 8 h of administration. The rank order of bioavailability was ISIS 11159 (full PS, full MOE) < ISIS 2302 (PS ODN) < ISIS 16952 (full PO, full MOE) < ISIS 14725 (full PS, partial MOE); the absolute plasma concentration bioavailability was measured in reference to intravenous dosing in the rat and was estimated at 0.3, 1.2, 2.1, and 5.5%, respectively. The optimal oligonucleotide chemistry for improved permeability and resulting bioavailability was the partially modified 3' hemimer 2'-O-MOE phosphorothioate oligonucleotide (ISIS 14725). Improved presystemic stability coupled with improved permeability were likely responsible for the remarkable improvement in the oral bioavailability of this compound.
منابع مشابه
Pharmacokinetics of a Tumor Necrosis Factor- Phosphorothioate 2 -o- (2-methoxyethyl) Modified Antisense Oligonucleotide: Comparison across Species
The pharmacokinetics of a 2 -O-(2-methoxyethyl)-ribose modified phosphorothioate oligonucleotide, ISIS 104838 (human tumor necrosis factorantisense), have been characterized in mouse, rat, dog, monkey, and human. Plasma pharmacokinetics after i.v. administration exhibited relatively rapid distribution from plasma to tissues with a distribution half-life estimated from approximately 15 to 45 min...
متن کاملIntegrated Safety Assessment of 2′-O-Methoxyethyl Chimeric Antisense Oligonucleotides in NonHuman Primates and Healthy Human Volunteers
The common chemical and biological properties of antisense oligonucleotides provide the opportunity to identify and characterize chemical class effects across species. The chemical class that has proven to be the most versatile and best characterized is the 2'-O-methoxyethyl chimeric antisense oligonucleotides. In this report we present an integrated safety assessment of data obtained from cont...
متن کاملThe Effects of 2′-O-Methoxyethyl Containing Antisense Oligonucleotides on Platelets in Human Clinical Trials
A thorough analysis of clinical trial data in the Ionis integrated safety database (ISDB) was performed to determine if there is a class effect on platelet numbers and function in subjects treated with 2'-O-methoxyethyl (2'MOE)-modified antisense oligonucleotides (ASOs). The Ionis ISDB includes over 2,600 human subjects treated with 16 different 2'MOE ASOs in placebo-controlled and open-label c...
متن کاملCharacterization of modified antisense oligonucleotides in Xenopus laevis embryos.
A wide variety of modified oligonucleotides have been tested as antisense agents. Each chemical modification produces a distinct profile of potency, toxicity, and specificity. Novel cationic phosphoramidate-modified antisense oligonucleotides have been developed recently that have unique and interesting properties. We compared the relative potency and specificity of a variety of established ant...
متن کاملThe Effects of 2′-O-Methoxyethyl Oligonucleotides on Renal Function in Humans
Systemically administered 2'-O-methoxyethyl (2'MOE) antisense oligonucleotides (ASOs) accumulate in the kidney and metabolites are cleared in urine. The effects of eleven 2'MOE ASOs on renal function were assessed in 2,435 patients from 32 phase 2 and phase 3 trials. The principle analysis was on data from 28 randomized placebo-controlled trials. Mean levels of renal parameters remained within ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 296 3 شماره
صفحات -
تاریخ انتشار 2001