Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction

نویسندگان

  • Yang Ge
  • Yukan Zhang
  • Qinru Qiu
چکیده

In this paper we explore the tradeoff between the leakage power and fan power to dynamically migrate tasks to minimize the overall power consumption in a homogeneous many-core processor. Our analysis shows that the overall power can be minimized if a task allocation for minimum peak temperature is adopted together with an intelligent fan speed adjustment that finds the optimal tradeoff between fan power and leakage power. We propose a method to compute the lower bound on the minimum peak temperature among all possible allocations of given a task set. We further propose two global heuristic task mapping algorithms and a multi-agent distributed task migration framework that minimizes the peak temperature during runtime. The proposed framework achieves large fan power saving as well as overall power reduction. Experimental results show that, given a tight temperature constraint, our distributed task migration policy can save up to 38.5% fan power and 28.9% overall system power compared to the best random mapping policy. Our data also show that the overall system power is insensitive to the task allocation when the temperature constraint is loose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Circuit Scheme for Wide Dynamic Circuits

In this paper, a new circuit scheme is proposed to reduce the power consumption of dynamic circuits. In the proposed circuit, an NMOS keeper transistor is used to maintain the voltage level in the output node against charge sharing, leakage current and noise sources. Using the proposed keeper scheme, the voltage swing on the dynamic node is lowered to reduce the power consumption of wide fan-in...

متن کامل

An agent based Distributed thermal balancing –Task migration

The system reliability, performance, cost, and leakage power in deep sub micrometer era have a significant impact by thermal hotspots and temperature gradients. As the system complexity increases, it is very difficult to perform thermal management in a centralized approach due to state explosion and the overhead of monitoring the entire chip. In this work, a framework for distributed thermal ma...

متن کامل

A Vlsi Design Perspective on Non-centralized Approach to Thermal Aware Task Migration in Many-core Systems

In deep sub-micrometer era, thermal hot spots, and large temperature gradients significantly impact system reliability, performance, cost, and leakage power. The increasing chip complexity and power density elevate peak temperatures of chip and unbalance the thermal gradients. Raised peak temperatures reduce lifetime of the chip, deteriorate its performance, affect the reliability and increase ...

متن کامل

Test Power Reduction by Simultaneous Don’t Care Filling and Ordering of Test Patterns Considering Pattern Dependency

Estimating and minimizing the maximum power dissipation during testing is an important task in VLSI circuit realization since the power value affects the reliability of the circuits. Therefore during testing a methodology should be adopted to minimize power consumption. Test patterns generated with –D 1 option of ATALANTA contains don’t care bits (x bits). By suitable filling of don’t cares can...

متن کامل

Pre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems

Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Low Power Electronics

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014