Na+-dependent HCO3- uptake into the rat choroid plexus epithelium is partially DIDS sensitive.
نویسندگان
چکیده
Several studies suggest the involvement of Na+ and HCO3- transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3- transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601-C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 +/- 0.02 to 7.38 +/- 0.02 (n=41) after addition of CO2/HCO3- into the bath solution. This increase was Na+ dependent and inhibited by the Cl- and HCO3- transport inhibitor DIDS (200 muM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3- uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3- -dependent net base flux of 0.828 +/- 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3- was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3- -dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl- bicarbonate exchanger, and NBCe2 in this tissue.
منابع مشابه
A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells.
The choroid plexus epithelium of the brain ventricular system produces the majority of the cerebrospinal fluid and thereby defines the ionic composition of the interstitial fluid in the brain. The transepithelial movement of Na+ and water in the choroid plexus depend on a yet-unidentified basolateral stilbene-sensitive Na+-HCO3- uptake protein. Reverse transcriptase-polymerase chain reaction (R...
متن کاملAltered pHi regulation and Na /HCO3 transporter activity in choroid plexus of cilia-defective Tg737 mutant mouse
Banizs B, Komlosi P, Bevensee MO, Schwiebert EM, Bell PD, Yoder BK. Altered pHi regulation and Na /HCO3 transporter activity in choroid plexus of cilia-defective Tg737 mutant mouse. Am J Physiol Cell Physiol 292: C1409–C1416, 2007. First published December 20, 2006; doi:10.1152/ajpcell.00408.2006.—Tg737 mice have defects in cilia assembly and develop hydrocephalus in the perinatal period of lif...
متن کاملNhe1 is a luminal Na+/H+ exchanger in mouse choroid plexus and is targeted to the basolateral membrane in Ncbe/Nbcn2-null mice.
The choroid plexus epithelium (CPE) secretes the major fraction of the cerebrospinal fluid (CSF). The Na(+)-HCO(3)(-) transporter Ncbe/Nbcn2 in the basolateral membrane of CPE cells is important for Na(+)-dependent pH(i) increases and probably for CSF secretion. In the current study, the anion transport inhibitor DIDS had no effect on the residual pH(i) recovery in acidified CPE from Ncbe/Nbcn2...
متن کاملTransport of [14C]hypoxanthine by sheep choroid plexus epithelium as a monolayer in primary culture: Na+-dependent and Na+-independent uptake by the apical membrane and rapid intracellular metabolic conversion to nucleotides.
Hypoxanthine is the main product of purine metabolic degradation and previous studies have revealed that it is present in the sheep CSF and plasma in micromolar concentrations. The aim of this study was to elucidate the transport of this molecule across the sheep choroid plexus epithelium (CPE) as a monolayer in primary culture, to explore the mechanism of uptake by the apical side of the CPE a...
متن کاملEpithelial pathways in choroid plexus electrolyte transport.
A stable intraventricular milieu is crucial for maintaining normal neuronal function. The choroid plexus epithelium produces the cerebrospinal fluid and in doing so influences the chemical composition of the interstitial fluid of the brain. Here, we review the molecular pathways involved in transport of the electrolytes Na+, K+, Cl-, and HCO3(-)across the choroid plexus epithelium.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 289 6 شماره
صفحات -
تاریخ انتشار 2005