The striatal mosaic in primates: striosomes and matrix are differentially enriched in ionotropic glutamate receptor subunits.
نویسندگان
چکیده
The cellular and subcellular distributions of the ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-preferring glutamate receptor (GluR) in monkey striatum were demonstrated immunocytochemically using anti-peptide antibodies to individual subunits of the AMPA receptor. These antibodies specifically recognize GluR1, GluR4, and an epitope common to GluR2 and GluR3 (designated as GluR2/3). On immunoblots, the antibodies detect proteins ranging from 102 to 108 kDa in total homogenates of monkey striatum, hippocampus, and cerebellum. By immunoblotting, GluR1 and GluR2/3 are considerably more abundant than GluR4 in the caudate nucleus. Within the caudate nucleus, putamen, and nucleus accumbens, numerous neuronal perikarya, dendrites, and spines show GluR1 and GluR2/3 immunoreactivities. GluR1- and GluR2/3-enriched striatal neurons have the morphology, transmitter specificity, and distribution of medium-sized (10-20 microns) spiny neurons; large (20-60 microns) round neurons exhibit GluR4 immunoreactivity. GluR1 immunoreactivity, but not GluR2/3 or GluR4 immunoreactivity, is more intense in the ventral striatum (i.e., nucleus accumbens) than in the dorsal striatum, and GluR1 is enriched within dendritic spines in the neuropil of the nucleus accumbens and striosomes in the dorsal striatum. In the caudate nucleus, these patches of dense GluR1 immunoreactivity align with regions low in calcium binding protein immunoreactivity and high in substance P immunoreactivity. Within striosomes, GluR1 immunoreactivity is more abundant than GluR2/3 immunoreactivity; GluR4 immunoreactivity is sparse in striosomes, but the matrix contains large, GluR4-positive cholinergic neurons. This study demonstrates that, within monkey striatum, subunits of ionotropic AMPA GluR have differential distributions within striosomes and matrix. Furthermore, the results suggest that neurons within striatal striosomes and matrix may express different combinations of GluR subunits, thus forming receptors with different channel properties and having consequences that may be relevant physiologically and pathophysiologically. Neurons within these two striatal compartments may have different roles in the synaptic plasticity of motor systems.
منابع مشابه
Response of striosomal opioid signaling to dopamine depletion in 6-hydroxydopamine-lesioned rat model of Parkinson's disease: a potential compensatory role
The opioid peptide receptors consist of three major subclasses, namely, μ, δ, and κ (MOR, DOR, and KOR, respectively). They are involved in the regulation of striatal dopamine functions, and increased opioid transmissions are thought to play a compensatory role in altered functions of the basal ganglia in Parkinson's disease (PD). In this study, we used an immunohistochemistry with tyramide sig...
متن کاملPostnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملPostnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملSubstance P Weights Striatal Dopamine Transmission Differently within the Striosome-Matrix Axis.
The mammalian striatum has a topographical organization of input-output connectivity, but a complex internal, nonlaminar neuronal architecture comprising projection neurons of two types interspersed among multiple interneuron types and potential local neuromodulators. From this cellular melange arises a biochemical compartmentalization of areas termed striosomes and extrastriosomal matrix. The ...
متن کاملP24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP
Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 2 شماره
صفحات -
تاریخ انتشار 1993