Pseudo-riemannian T -duals of Compact Riemannian Reductive Spaces

نویسنده

  • Ines Kath
چکیده

The aim of this paper is the construction of pseudo-Riemannian homogeneous spaces with special curvature properties such as Einstein spaces etc. using corresponding known compact Riemannian ones. This construction is based on the notion of a certain duality between compact and non-compact homogeneous spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. D G ] 1 6 O ct 2 00 4 NON - REDUCTIVE HOMOGENEOUS PSEUDO - RIEMANNIAN MANIFOLDS OF DIMENSION FOUR

A method, due tó Elie Cartan, is used to give an algebraic classification of the non-reductive homogeneous pseudo-Riemannian manifolds of dimension four. Only one case with Lorentz signature can be Einstein without having constant curvature, and two cases with (2,2) signature are Einstein of which one is Ricci-flat. If a four-dimensional non-reductive homogeneous pseudo-Riemannian manifold is s...

متن کامل

. D G ] 8 J un 2 00 4 NON - REDUCTIVE HOMOGENEOUS PSEUDO - RIEMANNIAN MANIFOLDS OF DIMENSION FOUR

A method, due tó Elie Cartan, is used to give an algebraic classification of the non-reductive homogeneous pseudo-Riemannian manifolds of dimension four. Only one case with Lorentz signature can be Einstein without having constant curvature, and two cases with (2,2) signature are Einstein of which one is Ricci-flat. If a four-dimensional non-reductive homogeneous pseudo-Riemannian manifold is s...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

On the Existence of Harmonic Morphisms from Certain Symmetric Spaces Sigmundur Gudmundsson and Martin Svensson

In this paper we give a positive answer to the open existence problem for complex-valued harmonic morphisms from the non-compact irreducible Riemannian symmetric spaces SLn(R)/SO(n), SU∗(2n)/Sp(n) and their compact duals SU(n)/SO(n) and SU(2n)/Sp(n). Furthermore we prove the existence of globally defined, complex-valued harmonic morphisms from any Riemannian symmetric space of type IV.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007