Stochastic Backward Euler: An Implicit Gradient Descent Algorithm for k-means Clustering
نویسندگان
چکیده
In this paper, we propose an implicit gradient descent algorithm for the classic k-means problem. The implicit gradient step or backward Euler is solved via stochastic fixed-point iteration, in which we randomly sample a mini-batch gradient in every iteration. It is the average of the fixed-point trajectory that is carried over to the next gradient step. We draw connections between the proposed stochastic backward Euler and the recent entropy stochastic gradient descent (Entropy-SGD) for improving the training of deep neural networks. Numerical experiments on various synthetic and real datasets show that the proposed algorithm finds the global minimum (or its neighborhood) with high probability, when given the correct number of clusters. The method provides better clustering results compared to k-means algorithms in the sense that it decreased the objective function (the cluster) and is much more robust to initialization.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملNote on Learning Rate Schedules for Stochastic Optimization
We present and compare learning rate schedules for stochastic gradient descent, a general algorithm which includes LMS, on-line backpropagation and k-means clustering as special cases. We introduce "search-thenconverge" type schedules which outperform the classical constant and "running average" (1ft) schedules both in speed of convergence and quality of solution.
متن کاملSequential Learning of Analysis Operators
In this paper two sequential algorithms for learning analysis operators are presented. They are built upon the same optimisation principle underlying both Analysis K-SVD and Analysis SimCO and use a stochastic gradient descent approach similar to ASimCO. The sequential analysis operator learning (SAOL) algorithm is based on projected gradient descent with an appropriately chosen step size while...
متن کاملStochastic Learning
This contribution presents an overview of the theoretical and practical aspects of the broad family of learning algorithms based on Stochastic Gradient Descent, including Perceptrons, Adalines, K-Means, LVQ, Multi-Layer Networks, and Graph Transformer Networks.
متن کاملConvergence Rate of Stochastic k-means
We analyze online [5] and mini-batch [16] k-means variants. Both scale up the widely used k-means algorithm via stochastic approximation, and have become popular for large-scale clustering and unsupervised feature learning. We show, for the first time, that starting with any initial solution, they converge to a “local optimum” at rateO( 1t ) (in terms of the k-means objective) under general con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.07746 شماره
صفحات -
تاریخ انتشار 2017