Searching for Circles of Pure Proofs* M
نویسنده
چکیده
hen given a set of properties or conditions (say, three) that are claimed to be equivalent, the claim e s can be verified by supplying what we call a circle of proofs. In the case in point, one proves th econd property or condition from the first, the third from the second, and the first from the third. If r s the proof that 1 implies 2 does not rely on 3, then we say that the proof is pure with respect to 3, o imply say the proof is pure. If one can renumber the three properties or conditions in such a way that
منابع مشابه
Quaternionic Product of Circles and Cycles and Octonionic Product for Pairs of Circles
This paper concerns with a product of circles induced by the quaternionic product considered in a projective manner. Several properties of this composition law are derived and on this way we arrive at some special numbers as roots or powers of unit. We extend this product to cycles as oriented circles and to pairs of circles by using the algebra of octonions. Three applications of the given pro...
متن کاملThe Bns-invariant for the Pure Braid Groups
In 1987 Bieri, Neumann and Strebel introduced a geometric invariant for discrete groups. In this article we compute and explicitly describe the BNS-invariant for the pure braid groups. In 1987 Robert Bieri, Walter Neumann, and Ralph Strebel introduced a geometric invariant of a discrete group that is now known as its BNS invariant [BNS87]. For finitely generated groups the invariant is a subset...
متن کاملA constructive version of Tarski's geometry
Constructivity, in this context, refers to a theory of geometry whose axioms and language are closely related to ruler and compass constructions. It may also refer to the use of intuitionistic (or constructive) logic, but the reader who is interested in ruler and compass geometry but not in constructive logic, will still find this work of interest. Euclid’s reasoning is essentially constructive...
متن کامل$(m,n)$-algebraically compactness and $(m,n)$-pure injectivity
In this paper, we introduce the notion of $(m,n)$-algebraically compact modules as an analogue of algebraically compact modules and then we show that $(m,n)$-algebraically compactness and $(m,n)$-pure injectivity for modules coincide. Moreover, further characterizations of a $(m,n)$-pure injective module over a commutative ring are given.
متن کاملElastic Behavior of Functionally Graded Two Tangled Circles Chamber
This paper presents the numerical elastic solution for a real problem, functionally graded chamber of hydraulic gear pumps under internal pressure. Because of the similarity and complexity for the considering geometry, a bipolar cylindrical coordinate system is used to extract the governing equations. The material properties are considered to vary along the two tangled circles with a power-law ...
متن کامل