Lyndon words and Fibonacci numbers

نویسنده

  • Kalle Saari
چکیده

It is a fundamental property of non-letter Lyndon words that they can be expressed as a concatenation of two shorter Lyndon words. This leads to a naive lower bound ⌈log 2 (n)⌉ + 1 for the number of distinct Lyndon factors that a Lyndon word of length n must have, but this bound is not optimal. In this paper we show that a much more accurate lower bound is ⌈logφ(n)⌉ + 1, where φ denotes the golden ratio (1 + √ 5)/2. We show that this bound is optimal in that it is attained by the Fibonacci Lyndon words. We then introduce a mapping Lx that counts the number of Lyndon factors of length at most n in an infinite word x. We show that a recurrent infinite word x is aperiodic if and only if Lx ≥ Lf , where f is the Fibonacci infinite word, with equality if and only if x is in the shift orbit closure of f .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Lyndon Factors

In this paper, we determine the maximum number of distinct Lyndon factors that a word of length n can contain. We also derive formulas for the expected total number of Lyndon factors in a word of length n on an alphabet of size σ, as well as the expected number of distinct Lyndon factors in such a word. The minimum number of distinct Lyndon factors in a word of length n is 1 and the minimum tot...

متن کامل

Lyndon Words and Singular Factors of Sturmian Words

Two diierent factorizations of the Fibonacci innnite word were given independently in 10] and 6]. In a certain sense, these factorizations reveal a self-similarity property of the Fibonacci word. We rst describe the intimate links between these two factorizations. We then propose a generalization to characteristic sturmian words. R esum e. Deux factorisations du mot de Fibonacci ont et e donn e...

متن کامل

On a class of Lyndon words extending Christoffel words and related to a multidimensional continued fractions algorithm

We define a class of Lyndon words, called Christoffel-Lyndon words. We show that they are in bijection with n-tuples of relatively prime natural numbers. We give a geometrical interpretation of these words. They are linked to an algorithm of Euclidean type. It admits an extension to n-tuples of real numbers; we show that if the algorithm is periodic, then these real numbers are algebraic of deg...

متن کامل

Coefficient Bounds for Analytic bi-Bazileviv{c} Functions Related to Shell-like Curves Connected with Fibonacci Numbers

In this paper, we define and investigate a new class of bi-Bazilevic functions related to shell-like curves connected with Fibonacci numbers.  Furthermore, we find estimates of first two coefficients of functions belonging to this class. Also, we give the Fekete-Szegoinequality for this function class.

متن کامل

On a Class of Lyndon Words Extending Christoffel Words and Related to a Multidimensional Continued Fraction Algorithm

We define a class of Lyndon words, called Christoffel-Lyndon words. We show that they are in bijection with n-tuples of relatively prime natural numbers. We give a geometrical interpretation of these words. They are linked to an algorithm of Euclidean type. It admits an extension to n-tuples of real numbers; we show that if the algorithm is periodic, then these real numbers are algebraic of deg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2014