Fragmentation in massive star formation.
نویسندگان
چکیده
Studies of evolved massive stars indicate that they form in a clustered mode. During the earliest evolutionary stages, these regions are embedded within their natal cores. Here we present high-spatial-resolution interferometric dust continuum observations disentangling the cluster-like structure of a young massive star-forming region. The derived protocluster mass distribution is consistent with the stellar initial mass function. Thus, fragmentation of the initial massive cores may determine the initial mass function and the masses of the final stars. This implies that stars of all masses can form via accretion processes, and coalescence of intermediate-mass protostars appears not to be necessary.
منابع مشابه
Radiation Feedback and Fragmentation in Massive Protostellar Cores
Star formation generally proceeds inside-out, with overdense regions inside protostellar cores collapsing rapidly and progressively less dense regions following later. Consequently, a small protostar will form early in the evolution of a core, and collapsing material will fall to the protostellar surface and radiate away its gravitational potential energy. The resulting accretion luminosity wil...
متن کاملLimiting Accretion onto Massive Stars by Fragmentation-induced Starvation
Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation,...
متن کاملUnderstanding Star Formation at Early Stages in the Filamentary Era by I-jen Lee Dissertation
This thesis presents a study of star formation at early stages in the filamentary era with a special focus on massive star and cluster formation. We first investigate the importance of filamentary structures in star formation and propose an observationally driven scenario for the evolution of filamentary structures from large-scale molecular clouds to small-scale circumstellar envelopes. In add...
متن کاملCentrally condensed turbulent cores: Massive stars or fragmentation?
We present numerical investigations into the formation of massive stars from turbulent cores of density gradient ρ ∝ r. The results of five hydrodynamical simulations are described, following the collapse of the core, fragmentation and the formation of small clusters of protostars. We generate two different initial turbulent velocity fields corresponding to power-law spectra P ∝ k and P ∝ k, an...
متن کاملFrom Massive Cores to Massive Stars
The similarity between the mass and spatial distributions of prestellar gas cores in star-forming clouds and young stars in clusters provides strong circumstantial evidence that these gas cores are the direct progenitors of individual stars. Here I describe a physical model for the evolution of massive cores into stars, starting with the intial phases of collapse and fragmentation, through disk...
متن کاملHigh Mass Star Formation by Gravitational Collapse of Massive Cores
The current generation of millimeter interferometers have revealed a population of compact (r ∼< 0.1 pc), massive (M ∼ 100 M⊙) gas cores that are the likely progenitors of massive stars. I review models for the evolution of these objects from the observed massive core phase through collapse and into massive star formation, with particular attention to the least wellunderstood aspects of the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 303 5661 شماره
صفحات -
تاریخ انتشار 2004