Improving distant supervision using inference learning
نویسندگان
چکیده
Distant supervision is a widely applied approach to automatic training of relation extraction systems and has the advantage that it can generate large amounts of labelled data with minimal effort. However, this data may contain errors and consequently systems trained using distant supervision tend not to perform as well as those based on manually labelled data. This work proposes a novel method for detecting potential false negative training examples using a knowledge inference method. Results show that our approach improves the performance of relation extraction systems trained using distantly supervised data.
منابع مشابه
Relation Extraction Using TBL with Distant Supervision
Supervised machine learning methods have been widely used in relation extraction that finds the relation between two named entities in a sentence. However, their disadvantages are that constructing training data is a cost and time consuming job, and the machine learning system is dependent on the domain of the training data. To overcome these disadvantages, we construct a weakly labeled data se...
متن کاملAdministrative and Clinical Supervision from the Viewpoints of the Faculty Members of Iran’s Medical Universities
Introduction. One of the most important activities of leadership and management in educational organizations is supervising instructors’ performance. Supervision can be applied as administrative or clinical supervision. Administrative supervision is usually performed through official channels, and clinical supervision takes place using individuals’ relationship and is based on promoting instru...
متن کاملMore or less supervised supersense tagging of Twitter
We present two Twitter datasets annotated with coarse-grained word senses (supersenses), as well as a series of experiments with three learning scenarios for supersense tagging: weakly supervised learning, as well as unsupervised and supervised domain adaptation. We show that (a) off-the-shelf tools perform poorly on Twitter, (b) models augmented with embeddings learned from Twitter data perfor...
متن کاملCombining Distant and Partial Supervision for Relation Extraction
Broad-coverage relation extraction either requires expensive supervised training data, or suffers from drawbacks inherent to distant supervision. We present an approach for providing partial supervision to a distantly supervised relation extractor using a small number of carefully selected examples. We compare against established active learning criteria and propose a novel criterion to sample ...
متن کاملEvent Extraction Using Distant Supervision
Distant supervision is a successful paradigm that gathers training data for information extraction systems by automatically aligning vast databases of facts with text. Previous work has demonstrated its usefulness for the extraction of binary relations such as a person’s employer or a film’s director. Here, we extend the distant supervision approach to template-based event extraction, focusing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015