Improving distant supervision using inference learning

نویسندگان

  • Roland Roller
  • Eneko Agirre
  • Aitor Soroa
  • Mark Stevenson
چکیده

Distant supervision is a widely applied approach to automatic training of relation extraction systems and has the advantage that it can generate large amounts of labelled data with minimal effort. However, this data may contain errors and consequently systems trained using distant supervision tend not to perform as well as those based on manually labelled data. This work proposes a novel method for detecting potential false negative training examples using a knowledge inference method. Results show that our approach improves the performance of relation extraction systems trained using distantly supervised data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation Extraction Using TBL with Distant Supervision

Supervised machine learning methods have been widely used in relation extraction that finds the relation between two named entities in a sentence. However, their disadvantages are that constructing training data is a cost and time consuming job, and the machine learning system is dependent on the domain of the training data. To overcome these disadvantages, we construct a weakly labeled data se...

متن کامل

Administrative and Clinical Supervision from the Viewpoints of the Faculty Members of Iran’s Medical Universities

Introduction. One of the most important activities of leadership and management in educational organizations is supervising instructors’ performance. Supervision can be applied as administrative or clinical supervision. Administrative supervision is usually performed through official channels, and clinical supervision takes place using individuals’ relationship and is based on promoting instru...

متن کامل

More or less supervised supersense tagging of Twitter

We present two Twitter datasets annotated with coarse-grained word senses (supersenses), as well as a series of experiments with three learning scenarios for supersense tagging: weakly supervised learning, as well as unsupervised and supervised domain adaptation. We show that (a) off-the-shelf tools perform poorly on Twitter, (b) models augmented with embeddings learned from Twitter data perfor...

متن کامل

Combining Distant and Partial Supervision for Relation Extraction

Broad-coverage relation extraction either requires expensive supervised training data, or suffers from drawbacks inherent to distant supervision. We present an approach for providing partial supervision to a distantly supervised relation extractor using a small number of carefully selected examples. We compare against established active learning criteria and propose a novel criterion to sample ...

متن کامل

Event Extraction Using Distant Supervision

Distant supervision is a successful paradigm that gathers training data for information extraction systems by automatically aligning vast databases of facts with text. Previous work has demonstrated its usefulness for the extraction of binary relations such as a person’s employer or a film’s director. Here, we extend the distant supervision approach to template-based event extraction, focusing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015