Gilbert-Varshamov bound for Euclidean space codes over distance-uniform signal sets

نویسندگان

  • B. Sundar Rajan
  • L. Venkata Subramaniam
  • Rajendar Bahl
چکیده

In this correspondence, in extension of Piret’s bound for codes over phase-shift keying (PSK) signal sets, we investigate the application of the Gilbert–Varshamov (GV) bound to a variety of distance-uniform (DU) signal sets in Euclidean space. It is shown that four-dimensional signal sets matched to binary tetrahedral, binary octahedral, and binary icosahedral groups lead to better bounds compared to the bounds for signal sets matched to dicyclic groups with the same number of signal points and comparable symmetric PSK signal sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Asymptotic Elias Bound for Euclidean Space Codes over Distance-Uniform Signal Sets

The asymptotic Elias upper bound of codes designed for Hamming distance is well known. Piret [3] and Ericsson [4] have extended this bound for codes over symmetric PSK signal sets with Euclidean distance and for codes over signal sets that form a group, with a general distance function respectively. The tightness of these bounds depend on a choice of a probability distribution, and finding the ...

متن کامل

Elias Upper Bound for Euclidean Space Codes and Codes Close to the Singleton Bound

A typical communication system consists of a channel code to transmit signals reliably over a noisy channel. In general the channel code is a set of codewords which are used to carry information over the channel. This thesis deals with Elias upper bound on the normalized rate for Euclidean space codes and on codes which are close to the generalized Singleton bound, like MaximumDistance Separabl...

متن کامل

Coding Theorems for Repeat Multiple Accumulate Codes

In this paper the ensemble of codes formed by a serial concatenation of a repetition code with multiple accumulators connected through random interleavers is considered. Based on finite length weight enumerators for these codes, asymptotic expressions for the minimum distance and an arbitrary number of accumulators larger than one are derived using the uniform interleaver approach. In accordanc...

متن کامل

On the Hamming-Like Upper Bound on the Minimum Distance of LDPC Codes

In [1] a Hamming-like upper bound on the minimum distance of regular binary LDPC codes is given. In this paper we extend the bound to the case of irregular and generalized LDPC codes over Fq. The bound is shown to lie under the Varshamov–Gilbert bound at high rates.

متن کامل

On Gilbert-Varshamov type bounds for Z2k linear codes

In this paper we derive a Gilbert-Varshamov type bound for linear codes over Galois rings GR(pl; j): However, this bound does not guarantee existence of better linear codes over GR(pl; j) than the usual Gilbert-Varshamov bound for linear codes over the residue class field GR(pj): Next we derive a Gilbert-Varshamov type bound for Z4 linear codes which guarantees the existence of Z4 linear codes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2002