A limiting case for Velocity

نویسندگان

  • B. PERTHAME
  • P. E. SOUGANIDIS
چکیده

We complete the theory of velocity averaging lemmas for transport equations by studying the limiting case of a full space derivative in the source term. Although the compactness of averages does not hold any longer, a speciic estimate remains, which shows compactness of averages in more general situations than those previously known. Our method is based on Calderon-Zygmund theory. R esum e Nous compl etons les lemmes de moyenne pour les equations de transport en etudiant le cas limite d'une d eriv ee en espace dans le terme source. La compacit e des moyennes ne peut ^ etre obtenue, mais nous d emontrons une estimation sp eciffque qui permet de montrer la com-pacit e en moyenne dans les situations les plus g en erales connues actuelle-ment. Notre m ethode s'appuie sur la th eorie de Calderon-Zygmund.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Torsional Vibrations of Composite Poroelastic Spherical Shell-Biot’s Extension Theory

Torsional vibrations of composite poroelastic dissipative spherical shell are investigated in the framework of Biot’s extension theory.Here composite poroelastic spherical shell consists of two spherical shells, one is placed on other, and both are made of different poroelastic materials. Consideration of the stress-free boundaries of outer surface and the perfect bonding between two shells lea...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

On the Limiting Velocity of High-dimensional Random Walk in Random Environment

We show that Random Walk in uniformly elliptic i.i.d. environment in dimension ≥ 5 has at most one non-zero limiting velocity. In particular this proves a law of large numbers in the distributionally symmetric case and establishes connections between different conjectures.

متن کامل

A New Approach for Obtaining Settling Velocity in a Thickener Using Statistical Regression: A Case Study

In this research work, the parameters affecting the settling velocity within the thickeners were studied by introducing an equivalent shape factor. Several thickener feed samples of different densities including copper, lead and zinc, and coal were prepared. The settling tests were performed on the samples, and the corresponding settling curves were plotted. Using the linear regression analysis...

متن کامل

محاسبه پتانسیل برهم‌کنش وان‌دروالس گرمایی با استفاده از پتانسیل کازیمیر-‌ پولدر

In this study, thermal Casimir-Polder potential is calculated for an atom in the presence of a dielectric sphere using the formula given in terms of the Green’s function. Then, the limiting cases of large and small sphere are investigated. In the limiting case of a large sphere, the formula of thermal potential for an excited atom in the presence of a dielectric half-space and then a perfectly ...

متن کامل

-

In this paper we start with Meyer-Ter-Vehn isobaric fusion model and try to reconstruct all equations by introducing a dimensionless variable ?i=ri/Rm. Then we investigate the proper sets of spark confinement parameter and temperature {Hs,Ts} which satisfy ignition conditions of spark ignition in deuterium-tritium (DT) equimolar mixture in terms of isentrope parameter, ?, implosion velocity, Ui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998