Mapping enzyme active sites in complex proteomes.
نویسندگان
چکیده
Genome sequencing projects have uncovered many novel enzymes and enzyme classes for which knowledge of active site structure and mechanism is limited. To facilitate mechanistic investigations of the numerous enzymes encoded by prokaryotic and eukaryotic genomes, new methods are needed to analyze enzyme function in samples of high biocomplexity. Here, we describe a general strategy for profiling enzyme active sites in whole proteomes that utilizes activity-based chemical probes coupled with a gel-free analysis platform. We apply this gel-free strategy to identify the sites of labeling on enzymes targeted by sulfonate ester probes. For each enzyme examined, probe labeling was found to occur on a conserved active site residue, including catalytic nucleophiles (e.g., C32 in glutathione S-transferase omega) and bases/acids (e.g., E269 in aldehyde dehydrogenase-1; D204 in enoyl CoA hydratase-1), as well as residues of unknown function (e.g., D127 in 3 beta-hydroxysteroid dehydrogenase/isomerase-1). These results reveal that sulfonate ester probes are remarkably versatile activity-based profiling reagents capable of labeling a diversity of catalytic residues in a range of mechanistically distinct enzymes. More generally, the gel-free strategy described herein, by consolidating into a single step the identification of both protein targets of activity-based probes and the specific residues labeled by these reagents, provides a novel platform in which the proteomic comparison of enzymes can be accomplished in unison with a mechanistic analysis of their active sites.
منابع مشابه
Microarray platform for profiling enzyme activities in complex proteomes.
Activity-based protein profiling (ABPP) is a chemical method that utilizes active-site-directed probes to determine the functional state of enzymes in complex proteomes. Probe-labeled enzymes are typically detected by in-gel fluorescence scanning, a robust technique that nonetheless exhibits some key deficiencies, including limited sensitivity and resolution, as well as ambiguity regarding the ...
متن کاملNHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
Most of the proteome is considered undruggable, oftentimes hindering translational efforts for drug discovery. Identifying previously unknown druggable hotspots in proteins would enable strategies for pharmacologically interrogating these sites with small molecules. Activity-based protein profiling (ABPP) has arisen as a powerful chemoproteomic strategy that uses reactivity-based chemical probe...
متن کاملProfiling serine hydrolase activities in complex proteomes.
Serine hydrolases represent one of the largest and most diverse families of enzymes in higher eukaryotes, comprising numerous proteases, lipases, esterases, and amidases. The activities of many serine hydrolases are tightly regulated by posttranslational mechanisms, limiting the suitability of standard genomics and proteomics methods for the functional characterization of these enzymes. To faci...
متن کاملRegional Specializations of the PAZ Proteomes Derived from Mouse Hippocampus, Olfactory Bulb and Cerebellum
Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ) comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus...
متن کاملModeling of Partial Digest Problem as a Network flows problem
Restriction Site Mapping is one of the interesting tasks in Computational Biology. A DNA strand can be thought of as a string on the letters A, T, C, and G. When a particular restriction enzyme is added to a DNA solution, the DNA is cut at particular restriction sites. The goal of the restriction site mapping is to determine the location of every site for a given enzyme. In partial digest metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 5 شماره
صفحات -
تاریخ انتشار 2004