A cortical evoked potential study of afferents mediating human esophageal sensation.
نویسندگان
چکیده
The aim of this study was to compare the characteristics of esophageal cortical evoked potentials (CEP) following electrical and mechanical stimulation in healthy subjects to evaluate the afferents involved in mediating esophageal sensation. Similarities in morphology and interpeak latencies of the CEP to electrical and mechanical stimulation suggest that they are mediated via similar pathways. Conduction velocity of CEP to either electrical or mechanical stimulation was 7.9-8.6 m/s, suggesting mediation via thinly myelinated Adelta-fibers. Amplitudes of CEP components to mechanical stimulation were significantly smaller than to electrical stimulation at the same levels of perception, implying that electrical stimulation activates a larger number of afferents. The latency delay of approximately 50 ms for each mechanical CEP component compared with the corresponding electrical CEP component is consistent with the time delay for the mechanical stimulus to distend the esophageal wall sufficiently to trigger the afferent volley. In conclusion, because the mechanical and electrical stimulation intensities needed to obtain esophageal CEP are similar and clearly perceived, it is likely that both spinal and vagal pathways mediate esophageal CEP. Esophageal CEP to both modalities of stimulation are mediated by myelinated Adelta-fibers and produce equally robust CEP responses. Both techniques may have important roles in the assessment of esophageal sensory processing in health and disease.
منابع مشابه
Cortical processing of human gut sensation: an evoked potential study.
The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology...
متن کاملNeurophysiological evaluation of healthy human anorectal sensation.
Patients with functional gastrointestinal disorders often demonstrate abnormal visceral sensation. Currently, rectal sensation is assessed by manual balloon distension or barostat. However, neither test is adaptable for use in the neurophysiological characterization of visceral afferent pathways by sensory evoked potentials. The aim of this study was to assess the reproducibility and quality of...
متن کاملThe CGRP receptor antagonist BIBN4096 inhibits prolonged meningeal afferent activation evoked by brief local K+ stimulation but not cortical spreading depression-induced afferent sensitization
Introduction Cortical spreading depression (CSD) is believed to promote migraine headache by enhancing the activity and mechanosensitivity of trigeminal intracranial meningeal afferents. One putative mechanism underlying this afferent response involves an acute excitation of meningeal afferents by cortical efflux of K+ and the ensuing antidromic release of proinflammatory sensory neuropeptides,...
متن کاملChapter 2 . 4 Somatosensory evoked potentials
Somatosensory evoked potentials (SEPs) are the electrical potentials generated in sensory pathways at peripheral, spinal, subcortical and cortical levels of the nervous system. SEPs can be elicited from almost any nerve, although the median and posterior tibial nerves are usually chosen in clinical practice. Recently up-dated reviews on SEP recording, normal waveforms, normative data and clinic...
متن کاملUnmyelinated afferents in human skin and their responsiveness to low temperature.
In humans, there are different types of cutaneous cold-sensitive afferents responsible for cold sensation and cold pain. Innocuous cold is primarily mediated by a population of slow A delta afferents, based on psychophysical and neurophysiological studies. Noxious cold (usually below 15 degrees C) is mediated, at least in part, by polymodal nociceptors. There is also a population of unmyelinate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 279 1 شماره
صفحات -
تاریخ انتشار 2000