Subconjunctivally Implanted Hydrogels for Sustained Insulin Release to Reduce Retinal Cell Apoptosis in Diabetic Rats.
نویسندگان
چکیده
PURPOSE Diabetic retinopathy (DR) is a leading cause of blindness in diabetic patients that involves early-onset retinal cell loss. Here, we report our recent work using subconjunctivally implantable hydrogels for sustained insulin release to the retina to prevent retinal degeneration. METHODS The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide and a dextran macromer containing oligolactate-(2-hydroxyetheyl methacrylate) units. Insulin was loaded into the hydrogels during the synthesis. The ex vivo bioactivity of insulin released from the hydrogels was tested on fresh rat retinas using immunoprecipitation and immunoblotting to measure insulin receptor tyrosine and Akt phosphorylation. The biosafety and the effect on the blood glucose of the hydrogels were evaluated in rats 2 months after subconjunctival implantation. The release of insulin from the hydrogels was studied both in vitro in PBS (pH 7.4), and in vivo using confocal microscopy and RIA kit. The in vivo bioactivity of the released insulin was investigated in diabetic rats using DNA fragmentation method. RESULTS The hydrogels could load insulin with approximately 98% encapsulation efficiency and continuously release FITC-insulin in PBS (pH = 7.4) at 37°C for at least 5 months depending on their composition. Insulin lispro released from the hydrogels was biologically active by increasing insulin receptor tyrosine and Akt serine phosphorylation of ex vivo retinas. In vivo studies showed normal retinal histology 2 months post subconjunctival implantation. Insulin released from subconjunctivally implanted hydrogels could be detected in the retina by using confocal microscopy and RIA kit for 1 week. The implanted hydrogels with insulin lispro did not change the blood glucose level of normal and diabetic rats, but significantly reduced the DNA fragmentation of diabetic retinas for 1 week. CONCLUSIONS The developed hydrogels have great potential to sustain release of insulin to the retina via subconjunctival implantation to minimize DR without the risk of hypoglycemia.
منابع مشابه
Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina.
The objective of this work is to develop subconjunctivally implantable, biodegradable hydrogels for sustained release of intact insulin to the retina to prevent and treat retinal neurovascular degeneration such as diabetic retinopathy. The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide (NIPAAm) monomer and a dextran macromer containing multiple hydrolytically degra...
متن کاملSimultaneous Effect of Resistance Training and Stem Cell Injection on Blood Glucose Levels, Insulin Resistance, Caspase 3 And 7 As Indicators of Skeletal Muscle Apoptosis in STZ-Induced Male Diabetic Rats
Background: The aim of the present study was to investigate the simultaneous effect of resistance training and stem cell injection on the levels of some indicators of skeletal muscle apoptosis in STZ-induced diabetic male rats. Methods: In this study, 30 rats were randomly divided into 5 groups. Rats in the diabetic group and the diabetic group + stem cell injection had a total of 17 sessions...
متن کاملEffects of Insulin and Ascorbic Acid on Inhibition of the Apoptosis in Hippocampus of Stz-Induced Diabetic Rats
Purpose: The aim of this study was to investigate effects of insulin and ascorbic acid on rate of Caspase – 3 activity and DNA Laddering in hippocampus of STZ-induced diabetic rats.Materials and Methods: Thirty male Wistar rats in five groups, 6 in each group: one control group (group C) and four diabetic groups [diabetic control (group D), treatment with insulin (group I), with ascorbic acid (...
متن کاملSimultaneous Effect of Resistance Training and Stem Cell Injection on Blood Glucose Levels and Bax and Bcl2 Protein Expression from Markers of Skeletal Muscle Apoptosis in STZ-Induced Diabetic Male Rats
Background: Type 1 diabetes is a disorder caused by autoimmune destruction of pancreatic insulin-producing cells. This induction of autoimmunity may be due to genetic and environmental factors. Bax and Bcl2 proteins play an important role in the process of apoptosis. Methods: In this study, 30 male Wistar rats weighting approximately 200±20gr were randomly selected from available rats in lab ...
متن کاملDiabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin.
Diabetic retinopathy is characterized by early onset of neuronal cell death. We previously showed that insulin mediates a prosurvival pathway in retinal neurons and that normal retina expresses a highly active basal insulin receptor/Akt signaling pathway that is stable throughout feeding and fasting. Using the streptozotocin-induced diabetic rat model, we tested the hypothesis that diabetes dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 56 13 شماره
صفحات -
تاریخ انتشار 2015