A functional computation model for the duality of two-variable Lambda-Boolean functions
نویسندگان
چکیده
This paper presents a new functional computation model for developing a class of two-variable Lambda-Boolean functions, and describes the properties of the duality principle on this model. With respect to this aim, some definitions and theorems which construct the model of the two-variable Lambda-Boolean functions are given. The simulation of the model is implemented in the programming language Prolog, and the whole code is given as an extended and revised version of the implementation in [S . Mirasyedioğlu, T. Güyer, A symbolic and algebraic computation based Lambda-Boolean reduction machine via PROLOG, Appl. Math. Comput. 176 (1) (2006) 65–75]. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
A symbolic and algebraic computation based Lambda-Boolean reduction machine via PROLOG
This paper presents a new Lambda-Boolean reduction machine for Lambda-Boolean and Lambda-Beta Boolean reductions in the context of Lambda Calculus and introduces the role of Church–Rosser properties and functional computation model in symbolic and algebraic computation with induction. The algorithm which improved for Lambda-Beta Boolean reduction is simulated by the efficient logical programmin...
متن کاملطراحی و اجرای GIS کاربردی جهت مکان یابی شهرک های صنعتی با استفاده از مدلهای فازی، وزن های نشانگر و ژنتیک
Different industrial decision makers and managers in our country, try to select and organize locations for aggregating industrial units, estates and areas with respect to land use planning visions and industrial development strategies. In this regard, considering large quantity of the input data and diverse criteria affecting this application, it is complicated and difficult to optimally make d...
متن کاملFekete-Szegö coefficient functional for transforms of universally prestarlike functions
Universally prestarlike functions of order $alphaleq 1$ in the slit domain $Lambda=mathbb{C}setminus [1,infty)$ have been recently introduced by S. Ruscheweyh.This notion generalizes the corresponding one for functions in the unit disk $Delta$ (and other circular domains in $mathbb{C}$). In this paper, we obtain the Fekete-Szegö coefficient functional for transforms of such f...
متن کاملSOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملExponential membership function and duality gaps for I-fuzzy linear programming problems
Fuzziness is ever presented in real life decision making problems. In this paper, we adapt the pessimistic approach tostudy a pair of linear primal-dual problem under intuitionistic fuzzy (I-fuzzy) environment and prove certain dualityresults. We generate the duality results using exponential membership and non-membership functions to represent thedecision maker’s satisfaction and dissatisfacti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 182 شماره
صفحات -
تاریخ انتشار 2006