Kappa opioid inhibition of somatodendritic dopamine inhibitory postsynaptic currents.

نویسندگان

  • Christopher P Ford
  • Michael J Beckstead
  • John T Williams
چکیده

In the midbrain, dopamine neurons can release dopamine somatodendritically. This results in an inhibitory postsynaptic current (IPSC) within adjacent dopamine cells that occurs by the activation of inhibitory D(2) autoreceptors. Kappa, but not mu/delta, opioid receptors inhibit this IPSC. The aim of the present study was to determine the mechanism by which kappa-opioid receptors inhibit the dopamine IPSC. In both the ventral tegmental area (VTA) and substantia nigra compacta (SNc) the kappa-receptor agonist U69593 inhibited the IPSC, but not the current induced by the exogenous iontophoretic application of dopamine. The endogenous peptide dynorphin A (1-13) also inhibited IPSCs in the VTA and SNc, but also the dopamine iontophoretic current in the VTA. Although both kappa agonists induced a postsynaptic outward current in the VTA, the current induced by dynorphin was dramatically larger. This suggests that the decrease in iontophoretic dopamine current was the result of occlusion. Occlusion alone, however, could not completely account for suppression of the IPSC. The kappa opioid inhibition of the IPSC was not affected by global increases or decreases in dopamine cell activity within the slice. These findings suggest that, although kappa opioid receptors can hyperpolarize dopamine neurons, they also suppress dopamine release by direct actions at the release site. The results thus demonstrate both pre- and postsynaptic actions of kappa receptor agonists. The actions of dynorphin indicate that VTA dopamine cells are selectively regulated by kappa receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell.

Microinjection of kappa-opioid receptor agonists into the nucleus accumbens produces conditioned place aversion. While attention has focused primarily on the inhibition of dopamine release by kappa-receptor agonists as the synaptic mechanism underlying this effect, recent anatomical studies have raised the possibility that regulation of noncatecholaminergic transmission also contribute. We have...

متن کامل

Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms.

Through their actions in the nucleus accumbens (NAc), kappa opioid (KOP) receptors and their endogenous ligand, dynorphin, modify behaviors associated with the administration of drugs of abuse and are regulated by exposure to such drugs. Despite their demonstrated behavioral significance, the synaptic actions of KOP receptor ligands in the NAc are not clearly understood. Using whole-cell voltag...

متن کامل

Vesicular Dopamine Release Elicits an Inhibitory Postsynaptic Current in Midbrain Dopamine Neurons

Synchronous activation of dopamine neurons, for instance upon presentation of an unexpected rewarding stimulus, results in the release of dopamine from both terminals in projection areas and somatodendritic sites within the ventral midbrain. This report describes an inhibitory postsynaptic current (IPSC) that was elicited by dopamine in slices from mouse midbrain. The IPSC was tetrodotoxin sens...

متن کامل

Acute fasting increases somatodendritic dopamine release in the ventral tegmental area.

Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also rel...

متن کامل

Neurotensin inhibits both dopamine- and GABA-mediated inhibition of ventral tegmental area dopamine neurons.

Dopamine is an essential neurotransmitter that plays an important role in a number of different physiological processes and disorders. There is substantial evidence that the neuropeptide neurotensin interacts with the mesolimbic dopamine system and can regulate dopamine neuron activity. In these studies we have used whole cell patch-clamp electrophysiology in brain slices from mice to examine h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 2007