Production, structure and in vitro degradation of electrospun honeybee silk nanofibers.
نویسندگان
چکیده
Honeybees produce silken cocoons containing four related fibrous proteins. High levels of each of the honeybee silk proteins can be produced recombinantly by fermentation in Escherichia coli. In this study we have used electrospinning to fabricate a single recombinant honeybee silk protein, AmelF3, into nanofibers of around 200 nm diameter. Infrared spectroscopy found that the molecular structure of the nanofibers was predominantly coiled coil, essentially the same as native honeybee silk. Mats of the honeybee nanofibers were treated with methanol or by water annealing, which increased their β-sheet content and rendered them water insensitive. The insoluble mats were degraded by protease on a time scale of hours to days. The protease gradually released proteins from the solid state and these were subsequently rapidly degraded into small peptides without the accumulation of partial degradation products. Cell culture assays demonstrated that the mats allowed survival, attachment and proliferation of fibroblasts. These results indicate that honeybee silk proteins meet many prerequisites for use as a biomaterial.
منابع مشابه
Electrospinning Nanofibers Gelatin scaffolds: Nanoanalysis of properties and optimizing the process for tissue engineering functional
Electrospinning has been recognized as an efficient technique for the fabrication of polymernanofibers. Recently, various polymers have successfully been electrospun into ultrafine fibers.Electrospinning is an extremely promising method for the preparation of tissue engineering scaffolds.In this study, nanofibers gelatin was electrospun at 20% v/v optimized content. To produce...
متن کاملElectrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation
In this study, Schwann cells, at a density of 1 × 10(5) cells/well, were cultured on regenerated silk fibroin nanofibers (305 ± 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no...
متن کاملPreparation and characterization of CS/ PEO/ cefazolin nanofibers with in vitro and in vivo testing
Objective(S): Electrospinning of chitosan/polyethylene oxide (CS/PEO) nanofibers with the addition of cefazolin to create nanofibers with antimicrobial properties were examined. Methods: Polymeric nanofibers including CS/PEO and CS/PEO /cefazolin, were produced by electrospinning method. The range of nanofiber was 60-100 nm in diameter and measured with I...
متن کامل3D cold-plate electrospun silk fibroin nanofibers
Cold-plate electrospun silk nanofibers look to be a promising scaffold for tissue engineering due to their ability to be controlled in the 3D nanofibrous form. They can be manipulated to resemble the dermis and other structures compatible with tissue repair.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 7 10 شماره
صفحات -
تاریخ انتشار 2011