Protein secondary structure prediction with a neural network.

نویسندگان

  • L H Holley
  • M Karplus
چکیده

A method is presented for protein secondary structure prediction based on a neural network. A training phase was used to teach the network to recognize the relation between secondary structure and amino acid sequences on a sample set of 48 proteins of known structure. On a separate test set of 14 proteins of known structure, the method achieved a maximum overall predictive accuracy of 63% for three states: helix, sheet, and coil. A numerical measure of helix and sheet tendency for each residue was obtained from the calculations. When predictions were filtered to include only the strongest 31% of predictions, the predictive accuracy rose to 79%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Design and Implementation of a Neural Network For the Evaluation of Protein Secondary Structure Prediction Using the DSSP and Chou-Fasman Algorithms

Neural networks have conventionally been used to predict protein secondary structure. However, they have not been used to improve the predictions of existing methods. This paper presents the design and implementation of a neural network to refine secondary structure prediction using information obtained from the DSSP and Chou-Fasman algorithms. The network was trained with input patterns consis...

متن کامل

Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...

متن کامل

Protein Secondary Structure Prediction with Long Short Term Memory Networks

Prediction of protein secondary structure from the amino acid sequence is a classical bioinformatics problem. Common methods use feed forward neural networks or SVM’s combined with a sliding window, as these models does not naturally handle sequential data. Recurrent neural networks are an generalization of the feed forward neural network that naturally handle sequential data. We use a bidirect...

متن کامل

Artificial Neural Network Based Prediction Hardness of Al2024-Multiwall Carbon Nanotube Composite Prepared by Mechanical Alloying

In this study, artificial neural network was used to predict the microhardness of Al2024-multiwall carbon nanotube(MWCNT) composite prepared by mechanical alloying. Accordingly, the operational condition, i.e., the amount of reinforcement, ball to powder weight ratio, compaction pressure, milling time, time and temperature of sintering as well as vial speed were selected as independent input an...

متن کامل

Improving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods

Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 86 1  شماره 

صفحات  -

تاریخ انتشار 1989